期刊文献+

基于曲波变换与整体变分的图像去噪算法 被引量:3

Method of Image Denoising Based on Curvelet Transform and Total Variation
下载PDF
导出
摘要 结合曲波变换与TV两种去噪模型的优点,提出了基于曲波变换与TV模型的去噪方法,用曲波变换的高频系数来检测图像边缘,引入边缘检测函数来引导TV模型的扩散,新模型不仅具有较强的去噪能力,同时图像的边缘信息得到很好的保护.采用峰值信噪比对去噪结果进行客观评价,实验结果表明,新模型的去噪效果明显优于曲波变换阈值法及TV模型. Combining with the advantages of curvelet transform and TV model, proposes a denoising method based on curvelet transform and TV model, which detects the edges of the image with the high-frequency coefficients of curvelet transform, introduces the edge detecting function to guide the TV model diffusion, the new model Can not only remove noise, but protect the edges of the image, use peak signal-to-noise ratio to evaluate the denoising results, the experimental results show that the denoising effect of the new model is significantly better than that of the curvelet transform threshold method and TV model.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第12期61-63,68,共4页 Microelectronics & Computer
关键词 曲波变换 整体变分 图像去噪 峰值信噪比 curvelet transform total variatiom image denoising~ PSNR
  • 相关文献

参考文献7

  • 1Candes E J, Demanet L, Donoho D L, et al. Fast dis-crete curvelettransforms [R]. Applied and Computa-tional Mathematics,California Intitule of Technology.2005:1-43.
  • 2Candes E J, Donoho D L. New tight frames of curveletsand optimal representation of objects with piecewise*singularities [J]. Commun on Pure and Appl Math,2004,57(2):219-266.
  • 3Rudin L, Osher S, Fatemi E. Nonlinear total variationbased noise removel algorithms [J]. Physica D,1992(60):259-268.
  • 4阮秋琦,仵冀颖.数字图像处理中的偏微分方程方法[J].信号处理,2012,28(3):301-314. 被引量:23
  • 5Perona P,Malik J. Scale-space and edge detection u-sing an isotropic diffusion[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1990,12(7):629-639.
  • 6陈利霞,宋国乡,丁宣浩,王旭东.改进的总变分去噪算法[J].光子学报,2009,38(4):1001-1004. 被引量:13
  • 7马少贤,江成顺.基于四阶偏微分方程的盲图像恢复模型[J].中国图象图形学报,2010,15(1):26-30. 被引量:20

二级参考文献42

共引文献53

同被引文献20

  • 1李海芳,王莉.基于人工免疫的图像聚类算法的研究[J].计算机工程与应用,2007,43(20):181-183. 被引量:4
  • 2Chan T F,Zhou H M.Total variation improved wavelet thresholding in image compression[C]//Proceedings of the2000 International Conference on Image Processing.Piscataway,NJ:IEEE Press,2000:391-394.
  • 3Durand S,Froment J.Reconstruction of wavelet coefficients using total variation minimization[J].SIAM Journal of Scientific Computing,2003,24(5):1754-1767.
  • 4Rudin L I,Osher S.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268.
  • 5Chen Y,Levine S,Rao M.Variable exponent,linear growth functionals in image processing[J].SIAM Appl Math,2006,66(4):1383-1406.
  • 6Vogel C R,Oman M E.Iterative methods for total variation denoising[J].Journal of Scientific Computing,1996,17(1):227-238.
  • 7Chambolle A.An algorithm for variation minimization and applications[J].Journal of Mathematical Imaging and Vision,2004,20:89-97.
  • 8Chan T F,Esedoglu S.Image decomposition combining staircase reduction and texture extraction[J].J Vis Commun Image R,2007,18:464-486.
  • 9付梦印,赵诚.基于二代Curvelet变换的红外与可见光图像融合[J].红外与毫米波学报,2009,28(4):254-258. 被引量:22
  • 10许丽群.小波阈值去噪改进算法研究[J].电子测量技术,2010,33(8):43-45. 被引量:19

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部