期刊文献+

基于离散时序基因表达数据的双聚类算法 被引量:1

Bicluster algorithm on discrete time-series gene expression data
下载PDF
导出
摘要 目前应用于基因表达数据上的双聚类算法大多是基于真实数据提出的,因此易受噪声干扰,且这些算法很少考虑样本间的时序性。提出了一种有效的时间点连续的双聚类挖掘算法DTCB,从离散的时序基因表达数据中挖掘出时间点连续的最大共表达双聚类。该算法使用了一种新的数据离散化方法,同时提出了三种在离散数据集下基因间的共表达关系;为了提高挖掘效率,DTCB使用了有效的剪枝和输出策略,可以在不产生候选集的情况下一次性挖掘出所有的最大共表达双聚类。通过实验分析,证明DTCB具有高效的性能和良好的鲁棒性,且结果具有较好的统计和生物意义。 At present, the bicluster algorithms applied to the gene expression data were mostly based on real data. Therefore,they were susceptible to noise interference, and these algorithms rarely considered the time sequence between samples. This paper proposed an efficient time-continuous bicluster algorithm DTCB to mine the maximal time-continuous biclusters from the discrete time-series gene expression data. It used a new discretization method on gene expression data and defined three co-expression relations between genes in the discrete dataset. DTCB adopted several pruning and output techniques to improve the efficiency. It could produce maximal co-expression biclusters without candidate maintenance. The experimental results show that DTCB has efficient performance and better robustness. Simultaneously,the results can be of more statistical and biological significance.
出处 《计算机应用研究》 CSCD 北大核心 2013年第12期3551-3556,3567,共7页 Application Research of Computers
基金 国家"973"计划资助项目(2012CB316203) 国家自然科学基金资助项目(61272121)
关键词 时序基因表达数据 双聚类 共表达 时间点连续 离散化 time-series gene expression data bicluster co-expression time-continuous discretization
  • 相关文献

参考文献17

  • 1RAMONI M,SEBASTIANI P,KOHANE I.Cluster analysis of gene ex-pression dynamics[J].PNAS,2002,99(14):9121-9126.
  • 2MADEIRA S C,OLIVEIRA A L.Biclustering algorithms for biologicaldata analysis:a survey[J].IEEE/ACM Trans on ComputationalBiology and Bioinformatics,2004,1(1):24-45.
  • 3TANAY A,SHARAN R,SHAMIR R.Discovering statistically signifi-cant biclusters in gene expression data[J].Bioinformatics,2002,18(SI):136-144.
  • 4BEN-DOR A,CHOR B,KARP R,ef al.Discovering local structure ingene expression data:the order-preserving submatrix problem[J].Journal of Computational Biology,2003,10(3-4):373-384.
  • 5MURALI T M,KASIF S.Extracting conserved gene expression motifsfrom gene expression data[C]//Proc of the 8th Pacific Symposium onBiocomputing.2003:77-88.
  • 6CHENG Y1CHURCH G M.Biclustering of expression data[C]//Procof International Conference on Intelligent Systems for MolecularBiology.New York:ACM Press,2000:93-103.
  • 7ZHAO Li-zhuang,ZAKI M.MicroCluster:efficient deterministicbiclustering of microarray data[J].IEEE Intelligent Systems,2005,20(6):40-49.
  • 8PANDEY G,ATLURI G,STEINBACH M,et al An association analy-sis approach to biclustering[C]//Proc of the 15th ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2009:677-686.
  • 9ZHANG Ya,ZHA Hong-yuan,CHU C H.A time-series biclusteringalgorithm for revealing co-regulated genes[C]//Proc of IEEE Interna-tional Conference on Information and Technology:Coding and Compu-ting.2005:32-37.
  • 10WANG Guo-ren,YIN Lin-jun,ZHAO Yu-hai,ei al.Efficiently miningtime-delayed gene expression patterns[J].IEEE Trans on IEEESystems,Man,and Cybernetics,Part B:Cybernetics,2010,40(2):400-411.

二级参考文献14

  • 1TAVAZOIE S, HUGHES J D, CAMPBELL M J, et al. Systematic determination of genetic network architecture [ J]. Nature Genetics, 1999,22 ( 3 ) :281 - 285.
  • 2RAMONI M, SEBASTIANI P, KOHANE I. Cluster analysis of gene expression dynamics [ J ]. Proceedings of the National Academy of Sciences of the USA,2002,99(14) :9121-9126.
  • 3CHENG Yi-zhong, CHURCH G M. Biclustering of expression data [ C ]//Proc of the 8th International Conference on Intelligent Systems for Molecular Biology. New York : ACM Press, 2000:93-103.
  • 4BEN-DOR A, CHOR B, KARP R, et al. Discovering local structure in gene expression data: the order-preserving submatrix problem [ C l//Proc of the 6th Annual International Conference on Computa- tional Biology. New York: ACM Press,2002:49-57.
  • 5CHENG K O, LAW N F, SIU W C, et al. BiVisu: software tool for bicluster detection and visualization [ J ]. Biointormatics, 2007,23 ( 17 ) :2342-2344.
  • 6ZHAO Li-zhuang, ZAKI M J. MicroCluster: an efficient deterministic biclustering algorithm for microarray data[ J]. IEEE Intelligent Sys- tems,2005,20(6) :40-49.
  • 7PANDEY G, ATLURI G, STEINBACH M, et al. An association a- nalysis approach to biclnsting[ C ]//Proc of the 15th ACM Conference on Kownlege Discovery and Data Mining. New York: ACM Press, 2009 : 677 - 686.
  • 8ZHANG Ya, ZHA Hong-yuan, CHU C H. A time-series biclustering algorithm for revealing co-regulated genes[ C]//Proc of the 5th IEEE International Conference on Information Technology : Coding and Com- puting. Washington DC: IEEE Computer Society,2005:32-37.
  • 9王淼,尚学群,谢华博,等.行常量差异表达基因模式挖掘算法研究[J].计算机研究与发展,2012,49(增刊):228-234.
  • 10WANG Miao, SHANG Xue-qun, MIAO Miao, et al. MSPattem : effi- cient mining maximal subspace differential co-expression patterns in microarray dat asets[ C ]//Proc of IEEE International Conference on Signal Processing, Communication and Computing. 2011 : 181 - 190.

共引文献2

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部