期刊文献+

分形市场视角下的期权定价模型及其套期保值策略研究 被引量:2

Research on the model of option pricing and its hedging strategy under fractional market standpoint
下载PDF
导出
摘要 自相似性和长期相关性等分形特性已被认为是现代金融市场最具代表的特征,这使得分数布朗运动成为数理金融研究中更为合适的工具。文章通过假定股票价格服从几何分数布朗运动,构建了It^o型分数Black-Scholes市场;接着在分数风险中性测度下,利用随机微分方程和拟鞅(quasi-martingale)定价方法给出了分数Black-Scholes期权定价模型,使得原始的Black-Scholes公式仅成为其特例;最后借助推广的分数Clark-Clone公式,给出了分数欧式期权的套期保值策略。 The self-similarity and long-range dependence properties, which are regarded as the most representa-tive properties of modem financial market, make the fractional Brownian motion(FBM) a suitable tool in dif- ferent applications like mathematical finance. Under the hypotheses that the price follows geometric FBM, the Ito fractional Black-Scholes market is constructed. Using the stochastic differential equation and the quasi- martingale pricing method based on the fractional risk neutral measure, the fractional Black-Scholes model is solved, which makes the original Black-Scholes a specific example. Finally, by the generalized fractional Clark-Clone equation, the hedging strategy of fractional European option is presented.
作者 赵巍
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第11期1388-1392,共5页 Journal of Hefei University of Technology:Natural Science
基金 江苏省高校哲学社会科学基金资助项目(2013SJB79004) 连云港市软科学资助项目(RK1203)
关键词 分数布朗运动 拟鞅定价 分数Black-Scholes模型 套期保值策略 fractional Brownian motion (FBM) quasi-martingale pricing fractional Black-Scholesmodel hedging strategy
  • 相关文献

参考文献14

  • 1Sumuelson P A. Rational theory of warrant pricing[J]. In- dustrial Management Review, 1965,6 (2) : 13-- 31.
  • 2Osborne M F M. Brownian Motion in the stock market[J]. Operations Research, 1959,7(2) : 145-- 173.
  • 3Fama E. The behavior of stoek market price[J]. The Jour- nal of Business, 1965,38(1) : 34-- 105.
  • 4Mandelbrot B B, Van Ness J W. Fractional Brownian mo- tion fractional noises and apptieation[J]. SIAM Review, 1968,10:422--437.
  • 5Lin S J. Stochastic analysis of fractional Brownian motion [J]. Stochastics and Stochastics Report, 1995, 55 (1): 121--140.
  • 6Roger L C G. Arbitrage with fractional Brownian motion [J]. Mathematical Finance, 1997,7(1) : 95-- 105.
  • 7Decreusefond L, Ustunel A S. Stochastic analysis of the fractional Brownian motion[J]. Potential Analysis,1999,10 (2) :177--214.
  • 8Hu Yaozhong,Oksendal B. Fractional white noise calculus and application to Finance[J]. Infinite Dimensional Analy- sis,Quantum Probability and Related Topics, 2000, 1 (6) : 1--32.
  • 9Neeula C. Option pricing in a fractional brownian motion en- vironment[D]. Romania:Academy of Economic Studies Bu- charest, 2002.
  • 10张卫国,肖炜麟,徐维军,张惜丽.跳跃分形过程下欧式汇率期权的定价[J].中国管理科学,2008,16(3):57-61. 被引量:6

二级参考文献69

共引文献24

同被引文献8

  • 1MANDELBROT B, VAN N J W. Fractional Brownian motion,fractional noises and application[J]. SIAM Review, 1968,10:422-437.
  • 2LIN S J. Stochastic analysis of fractional Brownian motion[J]. Stochastics and Stochastics Reports, 1995,55(1/2): 122-140.
  • 3BENDER C, ELLIOTT R J. Arbitrage in a discrete version of the Wick-fractional Black-Scholes market[J]. Mathematics of OperationsResearch,2004,29(4) : 935—945.
  • 4BJoRKT,HULT H. A note on Wick products and the fractional Black-Scholes model[J]. Finance and Stochastics,2005,9(2) : 197—209.
  • 5LEI P,NUALART D. A decomposition of the bi-fractional Brownian motion and some applicationsfJ]. Statistics and Probability Letters, 2009,79(5):619-624.
  • 6RUSSO F,TUDOR C. On the bifractional Brownian motion[J]. Stochastic Processes and their applications,2006,116(5) : 830-856 .
  • 7ALOS E, M AZET O, NU ALART D. Stochastic calculus with respect to Gaussian processes[J]. Annals of Probability, 2001,29(2): 766—801.
  • 8徐峰,郑石秋.混合分数布朗运动驱动的幂期权定价模型[J].经济数学,2010,27(2):8-12. 被引量:7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部