期刊文献+

一种基于区间估计的粒子滤波算法 被引量:4

Particle filter algorithm based on interval estimation
下载PDF
导出
摘要 针对非线性、非高斯系统的状态估计问题,本文提出了一种基于区间估计的粒子滤波算法.新算法从辅助粒子滤波算法的理论出发,首先对系统状态的期望值进行区间估计,然后在该区间上均匀采样,并利用当前观测信息进行修正,最后得出滤波结果.为了保证估计区间的有效性和算法计算效率,本文给出了区间扩展条件.由于算法直接在区间上均匀采样,不仅避免了重采样带来的样本贫化,而且保证了粒子的多样性.实验结果表明,该算法具有较高的滤波精度,明显优于一般的粒子滤波算法. To deal with non-linear, non-Gaussian state estimation problem, a kind of particle filter algorithm based on interval estimation was proposed. This paper analyzed the auxiliary particle filter at first. After interval estimating the expectation of the system states, the new algorithm sampled uniformly in the interval and updated the filter results using the new measurement. The interval extension conditions were proposed to ensure the validity of the estimated range and computational efficiency of the algorithm. Sampling uniformly in the interval avoids the particle degeneracy and improves the particle divergence. The experimental results show that the new particle filter is significantly better than the general particle filter.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第11期8-12,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61074127)
关键词 贝叶斯滤波 粒子滤波 区间估计 均匀采样 bayesian filtering particle filter interval estimate uniform sampling
  • 相关文献

参考文献10

  • 1GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IEE-Proceedings-F Radar and Signal Processing, 1993, 140(2): 107-113.
  • 2MUSSO C, OUDJANE N, Le GLAND F. Improving Regularized Particle Filters [ M ]. Sequential Monte Carlo Methods in Practice. New York: Springer, 2001: 247- 271.
  • 3Van Der MERWE R, DOUCET A, De FREITAS N, et al. The Unscented Particle Filter [ R ]. Cambridge: Cambridge University Engineering Department, 2000.
  • 4KOTECHA J H, DJURIC P M. Gaussian particle filtering[ J]. IEEE Transactions on Signal Processing, 2003, 51(10) : 2592-2601.
  • 5ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non- Gaussian Bayesian tracking [ J ]. IEEE Transactions on Signal Processing, 2002, 50(2):174-188.
  • 6CAPPE O, GODSILL S J, MOULINES E. An overview of existing methods and recent advances in sequential Monte Carlo[ J ]. Proceedings of IEEE, 2007, 95 (5) : 899-924.
  • 7DOUCET A, JOHANSEN A M. A tutorial on particle filtering and smoothing: fifteen years later [ C ]//The Oxford Handbook of Nonlinear Filtering. Oxford: Oxford University Press, 2011.
  • 8PITF M K, SHEPHARD N. Filtering via simulation: auxiliary particle filters [ J ]. Journal of American Statistical Association, 1999, 94(446) : 590-599.
  • 9杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 10程水英,张剑云.粒子滤波评述[J].宇航学报,2008,29(4):1099-1111. 被引量:100

二级参考文献135

  • 1宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法[J].宇航学报,2006,27(4):648-653. 被引量:23
  • 2汤琦,黄建国,杨旭东,冯西安.基于粒子滤波的被动多基站跟踪算法(英文)[J].宇航学报,2007,28(2):375-379. 被引量:1
  • 3JAZWINSKI A H. Stochastic Processes and Filtering Theory[M]. New York: Academic Press, 1970.
  • 4ANDERSON B D, MOORE J B. Optimal Filtering [ M]. New Jersey: Prentice-Hall, 1979.
  • 5BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J]. IEEE Trans on Automatic Control, 1988, 33 (8) :103 - 123.
  • 6BUCY R S, SENNE K D. Digital synthesis of nonlinear filters [ J ]. Automatica, 1971 , 7 ( 3 ) :287 - 298.
  • 7HAMMERSLEY J M, MORTON K W. Poor man's Monte Carlo [J]. J of the Royal Statistical Society B, 1954, 16( 1 ) :23 -38,
  • 8HANDSCHIN J E, MAYNE D Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering [J].Int J Control, 1969, 9(5): 547-559.
  • 9ZARITSKII V S, SVETNIK V B, SHIMELEVICH L I. Monte-Carlo techniques in problems of optimal information processing [J]. Automation and Remote Control, 1975, 36 (3) :2015 -2022.
  • 10GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings-F, 1993, 140(2) :107 - 113.

共引文献163

同被引文献48

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部