期刊文献+

电机轴承故障的自组织神经网络可视化诊断 被引量:1

Self-Organization Map Neural Network Diagnosis Based Motor Bearing Fault Visualization
下载PDF
导出
摘要 滚动轴承是电机的重要部件,及时、准确地对其进行故障诊断是电机安全运行的重要保障。针对滚动轴承常见的状态,包括正常、内圈轻微故障、滚动体轻微故障、外圈轻微故障、内圈中等故障、滚动体中等故障、外圈中等故障等七种情况,基于自组织神经网络,提出了电机轴承故障诊断的可视化方法。首先对采集到的振动信号进行特征提取,然后构建自组织神经网络,经过训练后,利用测试数据对诊断模型进行了测试,试验结果验证了所提方法的有效性。 Rolling element bearings constitute the key parts in motor, and the prompt and accurate fault detection of the bearings is very helpful in terms of enhancing the reliability of motor. For the common seven conditions, including normal condition, small inner race fault, small ball fault, small outer race fault, medium inner race fault, medium ball fanlt, and medium outer race fault, based on the self-organization map neural network, the visualization method of motor bearing fault diagnosis is presented. First, the features are extracted from the collected vibration signals. Then, the self- organization map neural network is constructed, and trained with the training samples. Last, the presented model is tested with the test samples. The experimental results show that the self-organization map neural network gets a promising result.
出处 《机械设计与制造》 北大核心 2013年第12期73-75,78,共4页 Machinery Design & Manufacture
基金 国家自然科学基金资助项目(51205371)
关键词 电机轴承 故障诊断 自组织神经网络 可视化 Motor Bearing Fault Diagnosis Self- Organization Map Neural Network Visualization
  • 相关文献

参考文献8

  • 1胡耀斌,厉善元,胡良斌.基于神经网络的滚动轴承故障诊断方法的研究[J].机械设计与制造,2012(2):187-189. 被引量:35
  • 2吴涛,原思聪,孟欣,张满意,刘道华.滚动轴承振动诊断的SOM神经网络方法[J].机械设计与制造,2010(1):198-200. 被引量:18
  • 3杜文辽,李安生,孙旺,李彦明,刘成良.基于蚁群SVDD和聚类方法的旋转机械故障诊断[J].上海交通大学学报,2012,46(9):1440-1444. 被引量:7
  • 4刘海宁.基于稀疏编码的设备状态识别及其重型轧辊磨床监测应用[D].上海:上海交通大学,2012.
  • 5Bearings vibration data set,Available at[OL].http://www.eecs.cwru.edu/laboratory/bearing/download.html.
  • 6Hu Q,He Z,Zhang Z,Zi Y.Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble[J].Mechanical Systems and Signal Processing,2007,21(2):688-705.
  • 7Saravanan N,Ramachandran KI.Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN)[J].[OL].Expert Systems with Applications,2010,37 (6):4168-4181.
  • 8The SOM Toolbox for Matlab,Available at http:.//www.cis.hut.fi/projects/somtoolhox/.

二级参考文献22

  • 1李萌,陆爽,陈岱民.基于小波神经网络的滚动轴承智能故障诊断系统[J].仪器仪表学报,2005,26(z1):609-610. 被引量:11
  • 2翟雨生,孙红亮,卞国华,房勇.滚动轴承的铁谱-振动模糊综合诊断系统[J].煤矿机械,2006,27(11):165-167. 被引量:2
  • 3李春华,肖洋,刘绍东.基于SOM神经网络的矿井提升机减速器齿轮故障诊断[J].矿山机械,2007,35(8):92-94. 被引量:5
  • 4R.Martin.Detection of Ball Bearing Malfunction[J].Instruments and Control Systems, 1970(12) :79-82.
  • 5Simon Haykin.Neural networks a comprehensive foundation [ M ]. Beijing: China Machine Press, 2003.
  • 6D.Mba,Raj B.K.N.Rao.Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: bearings, pump s,gearboxes,engines and rotating structures [J].The shock and vibration digest, 2006,38 (1):3-16.
  • 7飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2006.119-121.
  • 8Wang L Y,Zhao W G,Liu Y.Rolling bearing fault diagnosis based on wavelet packet-neural network characteristic entropy[J].Advanced Materials Research,2010,108-111:1075-1079.
  • 9Tax D M J,Duin R P W.Support vector domain description[J].Pattern Recognition Letters,1999,20(11-13):1191-1199.
  • 10Pan Y N,Chen J,Guo L.Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description [J].Mechanical Systems and Signal Processing,2009,23(3):669-681.

共引文献57

同被引文献18

引证文献1

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部