期刊文献+

基于神经网络的四自由度船舶操纵运动预报 被引量:10

Prediction of Ship Manoeuvring Motion in 4 Degrees of Freedom Based on Neural Network
下载PDF
导出
摘要 结合船舶操纵运动中横摇运动的特点,建立了基于径向基神经网络的四自由度船舶操纵运动预报模型。通过Z形试验和回转试验的部分仿真数据充分训练该神经网络,然后使用训练好的网络预报10°/10°Z形操纵运动,并将预报结果与仿真值进行对比,验证了所提出预报方法的有效性。同时基于该网络预报20°/20°Z形操纵运动和35°回转运动,证明该预报方法的具有良好泛化能力。 Considering rolling motion characteristics of ship manoeuverability, a prediction model of 4 degrees of freedom for ship manoeuvring motion based on neural network with radial basis function is established. The neural network is trained with one percent of simulation data (5/5, 10/10, 15/15, 250/25, 300/30 zigzag tests and 15, 25 turning circle manoeuvre) . The 10/10 and 200/20 zigzag tests motion and 35 turning circle manoeuvring motion are predicted using the trained neural network. The predicted results are compared with those of the simulation tests to demonstrate the accuracy and the generalization ability of the proposed method.
出处 《中国造船》 EI CSCD 北大核心 2013年第4期155-162,共8页 Shipbuilding of China
关键词 船舶操纵 运动预报 神经网络 四自由度 ship manoeuvring motion prediction neural network 4 degrees of freedom
  • 相关文献

参考文献10

  • 1SON K H, NOMOTO K. On the coupled motion of steering and rolling of a high speed container ship[J]. NavalArchitecture and Ocean Engineering, 1982,20: 73-83.
  • 2FOSSEN T I. Guidance and control of ocean vehicles[M]. John Wiley & Sons Inc. New York, USA, 1994.
  • 3BLANKE M, JENSEN A G Dynamic properties of a container vessel with low metacentric height[J]. Transactions of theInstitute of Measurement and Control, 1997,19(2): 78-93.
  • 4张显库,杨佐昌,关巍,陈铎,谢洪彬.基于船舶回转试验建立横摇响应型数学模型[J].中国航海,2009,32(4):77-79. 被引量:11
  • 5苏威,马宁,顾解忡.VLCC波浪中操纵性数值预报与自航模试验验证[J].中国造船,2012,53(3):9-17. 被引量:7
  • 6刘祖源,张谢东,吴秀恒.船舶操纵性能预报的人工神经网络方法[J].武汉交通科技大学学报,1997,21(1):1-5. 被引量:10
  • 7HESS D E,FALLER W E. Simulation of ship manoeuvres using recursive neural networks[C]// Proceeding of 23rdSymposium on Naval Hydrodynamics, Val de Reuil, France, 2001: 223-242.
  • 8LUO W L, ZOU Z J, Parametric identification of ship maneuvering models by using support vector machines[J]. Journalof Ship Research, 2009, 53(1): 19-30.
  • 9刘丽桑,彭侠夫.二阶灰色神经网络在船舶横摇预报中的应用[J].船舶力学,2011,15(5):468-472. 被引量:5
  • 10YIN J C, ZOU Z J, XU F. On-line prediction of ship roll motion during maneuvering using sequential learning RBF neuralnetworks [J]. Ocean engineering, 2013, 61: 139-147.

二级参考文献27

  • 1刘祖源,张乐文,吴秀恒.内河船队操纵性的数据库系统[J].武汉交通科技大学学报,1995,19(1):13-17. 被引量:2
  • 2张显库,金一丞.汽车运输船的响应型非线性数学模型[J].哈尔滨工程大学学报,2007,28(5):487-490. 被引量:8
  • 3Zhong Luo, Yuan Jingling, Xia Hongxia, et al. A study on Gray Neural Network Modeling[C]//Proceedings of the First International Conference on Machine Learning and Cybernetics. Beijing, China, 2002: 2021-2023.
  • 4Song Huazhu, Han Bo. Neural network modeling study of one dimension gray problem GNNM(1,1)[C]//Info-tech and Info-net Proceedings ICII. Beijing, 2001(3): 491-497.
  • 5De Kat J O, PAULLING J R. The simulation of ship motions and capsizing in severe seas[J]. Trans. SNAME, 1989 (97): 139-168.
  • 6HAMAMOTO M. Model experiment of ship capsize in astern seas (second report)[J]. 日本造船学会论文集 1996 (179):77-87.
  • 7MUNIF A . A zigzag maneuver for prediction of broaching to phenomenon in astern seas [J]. 关西造船协会志, 1999 (231):49-55.
  • 8安川宏紀.波浪中における船の操縦運動シミュレーシヨン(第1報:旋回運動)[C]//日本船舶海洋工学会論文集第4号,2006:127-136.
  • 9安川宏紀.波浪中における船の操縦運動シミュレーシヨン(第2報zig-zag運動とプロペラ逆転停止運動)[C]//日本船舶海洋工学会論文集第7号,2008:163-170.
  • 10SKEJIC R, FALTINSEN O M. A unified seakeeping and maneuvering analysis of a monohull in Regular Incident Waves[C]//Proc. of the 7th International Conference on Hyd., Ischia, Italy, (Vol. I), 2006:97-104.

共引文献27

同被引文献66

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部