期刊文献+

联合分布函数构造的Copula函数方法及结构可靠度分析 被引量:23

MODELING BIVARIATE DISTRIBUTION USING COPULAS AND ITS APPLICATION TO COMPONENT RELIABILITY ANALYSIS
原文传递
导出
摘要 不完备概率信息条件下变量联合分布函数的确定及其对结构可靠度的影响还缺少系统地研究。为此,提出了基于Copula函数的变量联合概率分布函数构造方法,并分析了不同Copula函数类型对结构可靠度的影响规律。首先,简要介绍了基于Copula函数的变量联合分布函数构造方法。其次,提出了构件失效概率计算的直接积分方法。最后以构件可靠度问题为例研究了Copula函数的类型对结构可靠度的影响规律。结果表明:不完备概率信息条件下构件可靠度是不唯一的,表征变量间相关性的Copula函数类型对构件可靠度具有明显的影响,不同Copula函数计算的构件失效概率存在明显的差别,这种差别随构件可靠指标的增大(或失效概率的减小)而增大。Copula函数尾部相关性对结构可靠度具有重要的影响。当功能函数的失效区域位于Copula函数尾部时,计算的失效概率明显比没有尾部相关性的Copula函数的失效概率大。基于功能函数的均值和标准差计算的可靠指标不能反映Copula函数的类型对结构可靠度的影响,而基于功能函数实际分布求得的失效概率则可以有效反映不同Copula函数对结构可靠度的影响。 The method for constructing the joint probability distribution of correlated variables based on incomplete probability information and its effect on component reliability has not been studied systematically. This paper aims to propose a method for modeling bivariate distribution using copulas and investigate the effect of a copula choice on component reliability. First, the method for constructing the joint probability distribution of correlated variables using copulas is briefly introduced. Thereafter, the formulae for the component probability of failure using direct integration are derived. Finally, an example of reliability analysis with linear performance functions is presented to demonstrate the effect of a copula choice on component reliability. The results indicate that component reliability cannot be determined uniquely with given marginal distributions and covariance.Copula choice has a significant effect on the component reliability. The probabilities of failure produced by different copulas differ considerably. Such a difference increases with the increase of reliability indexes or the decrease of failure probability. Tail dependence can result in a significant impact on the probability of failure. When tail dependence associated with a specified copula exists in a failure domain, the resulting probability of failure will become larger. The reliability index defined by the mean and standard deviation of a performance function cannot capture the difference among various copulas, while the probability of failure based on the actual distribution of a performance function can effectively accounts for the difference underlying various copulas.
出处 《工程力学》 EI CSCD 北大核心 2013年第12期8-17,42,共11页 Engineering Mechanics
基金 国家杰出青年科学基金项目(51225903) 国家自然科学基金项目(51329901 51079112)
关键词 联合分布函数 不完备概率信息 相关性 COPULA 失效概率 joint probability distribution function incomplete probability information correlation Copula probability of failure
  • 相关文献

参考文献17

  • 1Goda K.Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands [J].Structural Safety,2010,32(2): 112-123.
  • 2Leira B J.Probabilistic assessment of weld fatigue damage for a nonlinear combination of correlated stress components [J].Probabilistic Engineering Mechanics,2011,26(3): 492-500.
  • 3Low B K.Reliability analysis of rock slopes involving correlated nonnormals [J].International Journal of Rock Mechanics and Mining Sciences,2007,44(6): 922-935.
  • 4Li D Q,Chen Y F,Lu W B,et al.Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables [J].Computers and Geotechnics,2011,38(1): 58-68.
  • 5Li D Q,Tang X S,Phoon K K,et al.Bivariate simulation using copula and its application to probabilistic pile settlement analysis [J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(6): 597-617.
  • 6Dutfoy A,Lebrun R.Practical approach to dependence modeling using copulas [J].Proceedings of the Institution of Mechanical Engineers,Part O: Journal of Risk and Reliability,2009,223(4): 347-361.
  • 7吴帅兵,李典庆,周创兵.二维联合分布函数构造方法及其对结构可靠度的影响分析[J].工程力学,2012,29(7):69-74. 被引量:7
  • 8吴帅兵,李典庆,周创兵.联合分布函数蒙特卡罗模拟及结构可靠度分析[J].工程力学,2012,29(9):68-74. 被引量:11
  • 9李典庆,吴帅兵,周创兵,方国光.二维联合概率密度函数构造方法及结构并联系统可靠度分析[J].工程力学,2013,30(3):37-45. 被引量:3
  • 10吴帅兵,李典庆,周创兵.结构可靠度分析中变量相关时三种变换方法的比较[J].工程力学,2011,28(5):41-48. 被引量:26

二级参考文献60

  • 1吕大刚.基于线性化Nataf变换的一次可靠度方法[J].工程力学,2007,24(5):79-86. 被引量:34
  • 2Ditlevsen O, Madsen H O. Structural reliability methods [M]. New York: John Wiley & Sons, 1996.
  • 3Melchers R E. Structural reliability: analysis and prediction [M]. 2nd ed. New York: John Wiley & Sons, 1999.
  • 4Noh Y, Choi K K, Du L. Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula [J]. Structural and Multidisciplinary Optimization, 2009, 38(2): 1 -16.
  • 5Nelsen R B. An introduction to copulas [M]. 2nd ed. New York: Springer, 2006.
  • 6Pellissetti M F, Schueller G I. On general purpose software in structural reliability - An overview [J]. Structural Safety, 2006, 28(1-2): 3-16.
  • 7Freudenthal A M. Safety of structures [J]. Transactions of ASCE, 1947, 112: 125-180.
  • 8Schoutens W. Stochastic processes and orthogonal polynomials [M]. New York: Springer, 2000.
  • 9Winterstein S R. Nonlinear vibration models for extremes and fatigue [J]. Joumal of Engineering Mechanics, 1988, 114(10): 1772- 1790.
  • 10Rackwitz R, Fiessler B. Structural reliability under combined load sequence [J]. Computer and Structures, 1978, 114(12): 2195-2199.

共引文献40

同被引文献185

引证文献23

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部