期刊文献+

基于Curvelet及LPP的人脸识别算法

Face Recognition Based on Curvelet and LPP
下载PDF
导出
摘要 基于人脸图像的曲线奇异性及高维图像数据带来的计算复杂性,提出一种结合Curvelet变换与LPP的人脸识别方法。首先通过Curvelet变换对人脸图像降维,利用LPP将图像投影到最优子空间中,利用支持向量机进行分类识别,实验结果表明该算法的识别效果优于小波变换结合LPP方法、LPP方法。 Based on curves singularity of face image and the computational complexity caused by high-dimensional image data, proposes a new face recognition algorithm based on Curvelet transform and LPP. Applies curvelet transform dimensionality reduction for face image, uses LPP to project the image to the optimal subspace, applies support vector machine (SVM) for classification. Experimental results on ORL and Yale indicate that the performance of proposed method is superior to other methods, such as Wavelet transform combined with LPP and LPP method.
作者 卢世军
出处 《现代计算机》 2013年第23期30-33,共4页 Modern Computer
关键词 人脸识别 CURVELET LPP 支持向量机 Face Recognition Curvelet LPP(Local Preserving Projection) Support Vector Machine
  • 相关文献

参考文献12

  • 1Kirby M, Sirovich L. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces [J]. IEEE Trans. PAMI 1990,12(1):103-108.
  • 2FENG G C, YUEN P C, DAID Q. Human Face Recognition Using PCA on Wavelet Subband[J]. SPIE Journal of Electronic Imaging, 2000, 9(2): 226-233.
  • 3Bartlett M S, Wovellan J R, Sejnowski T J. Face Recognition by Independent Analysis[J]. IEEE Transactions on Pattern Analysis, 2002,13(6): 1450-1464.
  • 4Pric J R, Gee T F. Face Recognition Using Direct, Weighted Linear Discriminant Analysis and Modular Subspaces. PR, 2005,38(2): 209-219.
  • 5Tenenbaum J B, De Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J]. Science, 2000,290(5500): 2319-2323.
  • 6Xiao-fei HE, Shui-cheng YAN, Yu-xiao HU, Partha Niyogi, Hong-jiang ZHANG. Face Recognition Using Laplacianfaces [J ]. IEEE PAMI, 2005,27 (3) :328-340.
  • 7龚劬,华桃桃.基于改进的局部保持投影算法的人脸识别[J].计算机应用,2012,32(2):528-530. 被引量:7
  • 8Bai-ling ZHANG, Hai-hong ZHENG. Face Recognition by Applying Wavelet Sub-band Representation and Kernel Associative Memory[J]. IEEE, Trans on Neural Networks, 2004, 15(1):166-177.
  • 9Candes E, Demanet L, Donoho D, et al. Fast Discrete Curvelet Transforms[J]. Multiscale Modeling & Simulation,2006,5(3):861-899.
  • 10许学斌,张德运,张新曼,潘煜.采用二代曲波变换和反向传播神经网络的人脸识别方法[J].西安交通大学学报,2008,42(10):1213-1216. 被引量:5

二级参考文献24

  • 1张强,郭宝龙.应用第二代Curvelet变换的遥感图像融合[J].光学精密工程,2007,15(7):1130-1136. 被引量:29
  • 2李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 3杨镠,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法[J].西安交通大学学报,2007,41(4):448-452. 被引量:25
  • 4WANG YONG,WU YI.Face recognition using intrinsicfaces[J].Pattern Recognition,2010,43(10):3580-3590.
  • 5TENENBAUM J B,de SILVA V.LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 7TENENBAUM J,de SILVA V,LANGFORD J.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 8CAI DENG,HE XIAOFEI,HAN.JIAWEI.Isometric projection[EB/OL].[2011-03-19].http://www,aaai.org/Papers/AAAI/2007/.
  • 9ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(22):2323-2326.
  • 10BELKIN M,NIYOGI P.Laplacian Eigenmaps for dimensionality reduction and data representation[J].Neural Computations,2003,15(6):1373-1396.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部