期刊文献+

基于k-最近邻的红外点目标检测方法(英文) 被引量:2

Infrared point target detection based on k-Nearest Neighbor algorithm
原文传递
导出
摘要 对于辐射源边缘呈非线性变化的复杂图像,用背景预测的方法对红外弱小目标进行检测时,传统的固定权值(CW)方法效果比较差。在固定权值算法的基础上,引入了k-最近邻(k-NN)分类判别决策,提出了一种基于k-最近邻方法的红外点目标检测算法。先确定了预测窗口的大小,再通过计算方差和偏倚优化了最近邻参数k。实验结果表明,该算法在抑制背景、增强目标方面都有较好的优越性。它使预测的背景图像较好地避开离散信息,进而逼近背景的真实情况,为进一步滤除背景打下良好的基础。 As one of the background estimation algorithms for Infrared (IR) point target detection, the performance of constant weight (CW) method is poor to the complex nonlinear background. Therefore, a k- Nearest Neighbor (k- NN) discriminant decision is been lead to the CW. Furthermore, a k- NN algorithm for IR target detection was proposed. In order to filter out the complex nonlinear background, we the size of predicted window was confirmed first, and then the parameter by calculating the variance and bias of original and predicted image was optimized. It is shown by IR images detection experiments that the k-NN method improves the performance of detection in suppression of background and enhancement of target. It can predicted the background approximately and avoid discrete information better.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第S02期312-316,共5页 Infrared and Laser Engineering
基金 安徽省青年基金(1308085QF122)
关键词 点目标检测 K-最近邻 方差 偏倚 背景预测 point target detection k-Nearest Neighbor variance bias background estimation
  • 相关文献

参考文献4

二级参考文献29

共引文献48

同被引文献17

  • 1Changcai Yanga, Jiayi Mab, Zhang Meifang, et al. Multiscale facet model for infrared small target detection [J]. Infrared Physics & Technology, 2014(67): 202-209.
  • 2Tae-Wuk Bae. Small target detection using bilateral filter and temporal cross product in infrared images [J]. Infrared Physics & Technology, 2011(54): 403-411.
  • 3Wu Xin, Zhang Jianqi, Huang Xi, et al. Separable convolution template (SCT) background prediction accelerated by CUDA for infrared small target detection [J].Infrared Physics & Technology, 2013(60): 300-305.
  • 4Chen Yu, Yu Yah Xin, Zhao Ting, et al: The method of infrared point target detection and tracking based on DSP +FI~A [J]. Applied Mechanics and Materials, 2013(457): 1272-1277,.
  • 5Nvidia. Bringing GPU-accelerated computing to embedded systems [EB/OL]. [2014-04]. http://developer.download. nvidia, com/embedded/j etson/TK1/docs/Jetson platform brief_ May2014.pdf.
  • 6Nvidia. PM375 module specification [EB/OL]. [2014-05- 02]. http://developer, download.nvidia.com/embedded/jetson/ TK1/2014-03-24/JetsonTK1_Module Specification_ PM375_ Vl.01.pdf.
  • 7Jason Sanders, Edward Kandrot. CUDA by Example: an Introduction to General-Purpose GPU Programming [M]. Boston: Addison-Wesley, 2010.
  • 8Shane Cook. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs [M]. Waltham: Addison- Wesley, 2010.
  • 9巫春玲,韩崇昭.平方根求积分卡尔曼滤波器[J].电子学报,2009,37(5):987-992. 被引量:20
  • 10赵琳,王小旭,孙明,丁继成,闫超.基于极大后验估计和指数加权的自适应UKF滤波算法[J].自动化学报,2010,36(7):1007-1019. 被引量:69

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部