期刊文献+

Inluence of heat treatment on microstructure and tensile properties of a cast Al-Cu-Si-Mn alloy 被引量:2

Inluence of heat treatment on microstructure and tensile properties of a cast Al-Cu-Si-Mn alloy
下载PDF
导出
摘要 Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength AI-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the AI-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of a phase, undissolved e phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of cr phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%. Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength Al-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the Al-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of α phase, undissolved θ phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of α phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.
出处 《China Foundry》 SCIE CAS 2013年第6期355-359,共5页 中国铸造(英文版)
基金 financially supported by the National Natural Science Foundation of China(No.51371133)
  • 相关文献

参考文献12

二级参考文献96

共引文献268

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部