期刊文献+

基于模糊神经网络的建筑能耗评估模型研究 被引量:5

Assessment Model of Building Energy Consumption Based on Fuzzy Neural Network
下载PDF
导出
摘要 通过研究公共建筑耗能特点,结合建筑节能标准,提取了建筑能耗主要影响因素。在研究T-S模糊神经网络结构和算法的基础上,提出了基于T-S模糊神经网络的建筑能耗评估模型,用改进FCM聚类方法确定网络结构和参数初值,运用混合学习算法训练网络模型。将模型运用到评估实例中,结果表明基于改进FCM聚类的T-S模糊神经网络评估模型结构简单,学习和泛化能力强。 Main inflnence factors are extracted by analyzing characteristics of energy consumption with energy efficiency standards for building. The model for energy consumption assessment is built after researching structure and algorithm of TS fuzzy neural network. Improved FCM clustering is used to determine the structure of network and the initial values of former parameters. The model is trained by hybrid learning algorithm. The model is used to assess the energy consumption situation of public buildings. The structure of T-S fuzzy neural net- work assessment model based on improved FCM clustering is simple, and it has strong learning and generalization ability.
出处 《建筑节能》 CAS 2013年第11期67-69,共3页 BUILDING ENERGY EFFICIENCY
关键词 T-S模糊神经网络 改进FCM聚类 能耗评估模型 T-S fuzzy neural network improved FCM clustering assessment model of energy consumption
  • 相关文献

参考文献3

  • 1Kung C C,L in C C. A New Cluster Validity Criterion for Fuzzy c-Re-gression Model and its application to T-S fuzzy model identification[A].2004.1673-1678.
  • 2李百战,张宇,丁勇,谭颖.重庆市公共建筑能源管理现状分析[J].暖通空调,2010,40(9):112-117. 被引量:12
  • 3Efficiency Valuation Organization. International Performance Measurement and Verification Protocol[S].Washington DC:BC Hydro,2010.

二级参考文献10

共引文献11

同被引文献45

  • 1曹晖,王苗苗,贾立新,张彦斌.基于模糊自调整和采样模糊控制的磨机负荷控制策略[J].中南大学学报(自然科学版),2013,44(S1):255-259. 被引量:8
  • 2孙金颖,武涌,刘长滨.基于BP神经网络的既有居住建筑节能改造模式选择[J].暖通空调,2007,37(9):25-28. 被引量:6
  • 3黄超辉.微电网的发电和负荷预测及其模糊控制研究[D].湖南大学.2012.
  • 4Nazmi E K, Novruz A H, Ibrahim U S. Ismail saritas fuzzy expert system design for operating room air - condition control systems [ J ]. Expert Systems with Applications,2009,36 (6) : 9753 - 9758.
  • 5Ali A A, Abdul A A A, Nauman A, et al. A robust neural fuzzy petri net controller for a temperature control system [ J ]. Procedia Computer Science, 2011,5 (3) :881 - 890.
  • 6Bi Q, Cai W J, Wang Q G. Advanced controller auto - tuning and its application in HVAC systems [ J ]. Control Engineering Practice,2000,8 ( 6 ) :633 - 644.
  • 7Hamid K Y. Adaptive intelligent control of vehicle air conditioning system[ J]. Applied Thermal Engineering, 2013,51 ( 1 ) : 1154 - 1161.
  • 8Deng J L. Positional target in grey target theory [ J ]. The Journal of Grey System,2000 ( 1 ) : 1 - 8.
  • 9Vlasov S S, Shumikhin A G. Models and algorithms for fuzzy control system of atmospheric block in atmospheric - and - vacuum distillation unit: design and analysis[ J]. Automation and Remote Control,2012 (10) :735 -739.
  • 10Andon V T P,Yesim 0 Z,Erdal K Y,et al. Neuro -fuzzy control of antilock braking system using sliding mode incremental learning algorithm [ J ]. Neurocomputing, 2011,74 ( 11 ) : 1883 - 1893.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部