摘要
针对机器人末端轨迹为自由曲线问题,研究了三次非均匀B样条曲线插补算法。该算法能够根据任意分布的示教点,通过曲线反算求出原曲线。针对曲线速度规划中减速点难以预测的问题,提出以复合柯特斯公式进行曲线积分,求出曲线长度;并通过曲线反向拟合,将机器人运行位移实时地转化为插补点。同时为了减小震荡,利用曲率极值点对曲线进行了分段速度规划,从而达到在曲率极值点处进行减速的目的。最后,通过一个仿真实例,证明了该算法的有效性。
For the free curve problem of robot end-effector trajectory, the interpolation algorithm based on cubic Non-uniform B-spline curve is researched. The original curve can be obtained by curveinversing through this algorithm, according to the teaching point of arbitrary distribution. For the problem that deceleration point is unpredictable in the curve federate scheduling, compound Cotes formulas are proposed to do curvilinear integral to obtain the length of the curve and making the running displacement of robot into interpolation points in real time through curve inversion fitting. At the same time, to reduce the shock, the segment federate scheduling is done by using the extreme points of the curve curvature, consequently, the aim of reducing the federate at the extreme points of the curve is reached. Finally, a simulation example is utilized to demonstrate the effectiveness of the algorithm.
出处
《科学技术与工程》
北大核心
2013年第35期10511-10517,共7页
Science Technology and Engineering
基金
国防技术基础研究项目(科工技[2011]869号)
四川省教育厅青年基金(10zd1135)资助
关键词
三次非均匀B样条
曲线积分
反向拟合
速度规划
cubic non-uniform B-spline curvilinear integral inversion fitting federate scheduling