期刊文献+

基于HDFS管理MapGIS K9瓦片地图集的研究与实现 被引量:8

RESEARCH AND IMPLEMENTATION OF MANAGING MAPGIS K9 TILE MAP SET BASED ON HDFS
下载PDF
导出
摘要 关系型数据库在管理海量空间数据时遇到诸多瓶颈,HDFS(Hadoop Distributed Filesystem)通过将大数据分割为多个小数据块,并将其分别存储在多个数据节点组成的分布式集群中,成为一种新的存储海量空间数据的方法。使用HDFS作为平台,利用数据结构类型MapFile设计一种管理MapGIS K9瓦片地图集的方式,并进行实验。实验表明用HDFS管理海量瓦片地图比传统方式管理更易扩展,更加安全,效率更加高。 Relational databases encounter quite a few bottlenecks while managing the massive spatial data. HDFS becomes a new method to store huge amounts of spatial data by dividing the large data into several small data blocks and separately storing them into several distributed clusters that are composed of data nodes. We design a MapGIS K9 tile map set management means by using HDFS as the platform and utilise the data structure type of MapFile, and make the experiment as well. Experiment shows that to use HDFS to manage massive tile map is more scalable, more secure and has higher efficiency than the traditional ways do.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第12期232-235,共4页 Computer Applications and Software
关键词 海量空间数据 管理 HDFS 瓦片地图集 Massive spatial data Management I-Iadoop distributed filesystem(HDFS) , Tile map set
  • 相关文献

参考文献6

二级参考文献21

  • 1李德仁,肖志峰,朱欣焰,龚健雅.空间信息多级网格的划分方法及编码研究[J].测绘学报,2006,35(1):52-56. 被引量:76
  • 2JoanM,KeithP,NuriaJ.OpenGISWebMapTileServiceImplementationStandard..http://portal.opengeospatial.org/files/?artifact_id=35326.
  • 3Kangy K, Kim K C, Kim Y S. Probability-based tile pre-fetching and cache replacement algorithms for web geographical information systems//Proceedings of 5th East European Conference on Advances in Databases and Information Systems.Vilnius, Lithuania:IEEE,2001:127-140.
  • 4Chao W Y, David W W,Rui X Y,et al.Performance-improving techniques in web-based GIS [J].International Journal of Geographical Information Science, 2005, 19(3):319-342.
  • 5Young-Sub C. A Client-side Web GIS Using Tiling Storage Structure and Hybrid Spatial Query Processing Strategy . Incheon, Korea: INHA University, 1999.
  • 6Sagan H.Space-filling Curves [M].Berlin/Heidelberg/New York:Springer-Verlag.1994.
  • 7Samet H. Foundations of Multidimensional and Metric Data Structures [M]. San Francisco :Morgan Kaufman Publishers, 2006.
  • 8Aref W G, Kamel I,Mokbel M F. Analysis of multi-dimension space filling curves [J].Geoinformatica, 2003, 7(3): 179-209.
  • 9Chen K L, Chang Y I. Neighbor-finding based on space-filling curves [J].Information Systems. 2005, 30(3), 205-226.
  • 10黄铠,高等计算机系统结构,1995年

共引文献43

同被引文献66

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2吕公河,于常青,董宁.叠后地震属性分析在油气田勘探开发中的应用[J].地球物理学进展,2006,21(1):161-166. 被引量:69
  • 3http://www.informatik.uni-trier.de/~ley/db/
  • 4Asian Brookel. Interview and book review: The LogStash book, log management made easy. http://www.infoq.com/ articles/review-the-logstash-book?utm_source=tuicool.
  • 5Rashid Khan. Kibana3: milestone 4. (2013-9-5). http:// www,elasticsearch.org/blog/kibana-3-milestone-4/.
  • 6Lin J, Schataz M. Design patterns for efficient graph algorithms in ma- preduce [ C ]//MLG,2010,22(3 ) :78 - 85.
  • 7Lv Qin, Josephson W,Wang Zhe, et al. Multi-probe LSH : efficient inde- xing for high-dimensional similarity search [ C ]//Pm of the 33 Int Conf on Very Large Data Bases ( VLDB' 07 ). Vienna Austria: VLDB Endowment ,2007,10 (2) :950 - 961.
  • 8Yang H C, Dasdan A, Hsiao R L, et al. Map-Reduce-Merge: Simplified relational data processing [ C ]//Proc of ACM SIGMOD International Conference on Management of Data, New York: ACM, 2007:1029 -1040.
  • 9Vrba Z, Halvorsen P, Griwodz C, et al. Kahn process networks are a flexible alternative to mapreduce [ C]//Pine of IEEE International Con- ference on High Performance Computing and Communications, Piscat- away : IEEE ,2009 : 154 - 162.
  • 10Sandholm T, Lai K. MapReduce optimization using regulated dynamic priofitization[ J ]. Performance Evaluation Review, 2009,37 ( 1 ) : 299 -310.

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部