期刊文献+

Ni-Ce_(0.8)Gd_(0.2)O_(1.9)阳极孔隙对中温固体氧化物燃料电池性能的影响(英文) 被引量:1

Effect of Ni-Ce_(0.8)Gd_(0.2)O_(1.9) Anode Pores on Performance of Intermediate Temperature Solid Oxide Fuel Cells
原文传递
导出
摘要 通过将40、400nm石墨与NiO-GDC水浴搅拌混合,将400nm石墨与NiO-GDC机械研磨混合制备得到3种阳极孔隙大小及分布不同的NiO-GDC复合阳极片及单电池片.阳极片扫描电子显微镜测试结果表明:在40、400nm石墨与NiO-GDC水浴搅拌混合得到的阳极片中孔隙分布均匀,但前者孔径较小,后者孔径相对较大.而400nm石墨与NiO-GDC机械研磨混合得到的阳极片中可明显观察到尺度达到几十微米的不均匀分布的大孔.阳极电导率及单电池电化学性能测试结果表明:阳极孔隙越小,分布越均匀,则电导率和单电池的电化学性能越好.40nm石墨与NiO-GDC水浴搅拌混合得到的阳极片还原后的电导率最高,其单电池的电化学性能最好,其在600,650和700℃时的最大功率密度分别为0.173,0.310,0.445W·cm-2. Three kinds of anodes and cells with different pores in anode were prepared via water bath- mixing graphite particles of 40 nm and 400 nm with NiO-GDC anode powders, and via mechanically-mixing graphite of the size of 400 nm with NiO-GDC anode powders. The results of anodes by scanning electron microscopy show that the pores distribute uniformly in anodes fabri- cated via water bath-mixing graphite particles of 40 nm and 400 nm with NiO-GDC anode powders. The pore size of the latter anode is greater than that of the former anode. In anode fabricated via mechanically-mixing graphite particles of 400 nm with NiO-GDC anode powders, some larger pores of several ten microns appear and distribute non-uniformly. The results also indi- cate that the smaller the anode pores are, the more uniformly the anode pores distribute, and the better the electrochemical per- formanee of the anode and its single cell will be. The cell fabricated v/a water bath-mixing graphite particles of 40 nm with NiO-GDC anode powders has the superior electrochemical performance. The maximum power densities of this cell are 0. 173, 0. 310 and 0. 445 W/cm2at 600,650 and 700 ~C, respectively.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2014年第1期56-64,共9页 Journal of The Chinese Ceramic Society
关键词 中温固体氧化物燃料电池 阳极支撑电池 阳极孔隙 电化学性能 阳极 intermediate t^nperature solid oxide fuel cells anode-supported cell anode pores electrochemical performance anode
  • 相关文献

参考文献1

二级参考文献18

  • 1孙明涛,孙俊才,季世军.固体氧化物燃料电池阳极研究[J].硅酸盐通报,2005,24(1):55-59. 被引量:5
  • 2单耕,由宏新,丁信伟,阿布里提.阿布都拉.固体氧化物燃料电池阳极结构研究进展[J].电源技术,2005,29(7):488-490. 被引量:3
  • 3邓莉萍,袁永瑞,罗军明,张国光.Ni-GDC阳极的制备及其孔隙率研究[J].稀有金属快报,2006,25(11):22-25. 被引量:1
  • 4WANG Y Z, YOSHIBA F, WATANABE T, et al. Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-elvctrodc-supportcd SOFC [J]. J Power Sources, 2007, 170(I): 101-110.
  • 5CAMPANARI S, IORA E Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry [J]. J Power Sources, 2004, 132(1-2): 113-126.
  • 6BESSETTE N. Modeling and simulation for solid oxide fuel cell power systems [D]. Atlanta: Georgia Institute of Technology, Atlanta, 1994.
  • 7TODD B, YOUNG J B. Thermodynamic and transport properties of gases for use in solid oxide fuel modeling [J]. J Power Sources, 2002, 110(1): 186-200.
  • 8CHAN S H, KHOR K A, XIA Z T. A complete polarization model of a solid oxide fuel cell and its sensitivity of the change of cell component thickness [J]. J Power Sources, 2001, 93(1/2): 130-140.
  • 9National Energy Technology Laboratory. Fuel Cell Handbook (7^th Ed.)[EB/OL]. [2004-12-06]. http://www.netl.doe.gov.
  • 10WANG Y Z, YOSHIBA F, TAKAO K, et al. Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC [J]. Int J Hydrogen Energy, 2009, 34(9): 3885-3893.

共引文献8

同被引文献29

  • 1冯长根,樊国栋,王亚军.含铈氧化物储氧材料的合成方法研究进展[J].现代化工,2004,24(11):10-14. 被引量:4
  • 2TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials [J]. Catal Rev Sci Eng, 1996, 38 (4): 439-509.
  • 3MASUI T, MINAMI K, KOYABU K, et al. Synthesis and characterization of new promoters based on CeOz-ZrO2-Bi203 for automotive exhaust catalysts [J], Catal Today, 2006, 117(1/3): 187-192.
  • 4DONG Q, YIN S, GUO C S, et al. A new oxygen storage capacity material of a tin-doped ceria-zireonia-supported palladium alumina catalyst with high CO oxidation activity [J]. Chem Lett, 2012, 41(10): 1250-1252.
  • 5POGGIO-FRACCARI E, SAMBETH J, BARONETTI G: et al. Cu/MnOx:eO2 and Ni/MnO:-CeO2 catalysts for the water gas shift reaction: Metal-support interaction [J]. Int J Hydrogen Energy, 2014, 39(16): 8675-8681.
  • 6USLU I, AYTIMUR A, KOCYIGIT S. Synthesis and characterization of erbia and ceria doped calcia stabilized nanocrystalline zirconia based ceramics [J]. J Sol-Gel Sei Technol, 2013, 65(2): 112-120.
  • 7KASPAR J, FORNASIERO P, GRAZIANI M. Use of CeOz-based oxides in the three-way catalysis [J]. Catal Today, 1999, 50(2): 285-298.
  • 8ALIFANTI M, BAPS B, BLANGENOIS N, et al. Characterization of CeOz-ZrOz mixed oxides: Comparison of the citrate and sol-gel preparation methods [J]. Chem Mater, 2003, 15 (2): 395-403.
  • 9VENKATASWAMY P, JAMPAIAH D, RAO K N, et al. Nanostructured Ceo.7Mn0.302: and Ceo.7Fe0.302: solid solutions for diesel soot oxidation [J]. Appl Catal A: Gen, 2014, 488:1 10.
  • 10VLAIC G: DI MONTE R, FORNASIERO P, et al. The CeO2-ZrO2 system: redox properties and structural relationships [J]. Stud Surf Sci Catal, 1998, 116: 185-195.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部