期刊文献+

三维非凸区域外包面的自动生成算法

An automatic generation algorithm of 3-D non-convex region surface
下载PDF
导出
摘要 海岸工程的三维建模中一般需要根据已知散乱点集重构出计算模型的外包面。文章基于区域增长法,提出一种根据给定的三维散乱点集自动寻找其合适外包面的算法。该算法从随时改变着的局部入手,去寻找该局部区域凸包上的一个三角形,最后所有的三角形形成一个闭合的区域,即为整个区域外包面。局部的大小由事先设定的搜索点数控制。当点的布局较为合理,并且给定的全局搜索点数合适的情况下,算法可以较好地还原区域的外包面。 In the mathematical model of coastal engineering, it is required to get the surface of the given points set. In this paper, based on the region growing method, an algorithm for automatic searching for the appropriate surface according to the given scattered points was presented. Beginning with the local region, the algorithm searches a triangle on the convex hull of the local region, and all of the triangles form a closed region, which is the surface of entire region. The size of local region is controlled by the number of searching points. When the distribution of points is reasonable, and the given global searching points are appropriate, the algorithm can restore the surface well.
出处 《水道港口》 2013年第6期542-546,共5页 Journal of Waterway and Harbor
关键词 点集 外包面 非凸 算法 points set surface non-convex algorithm
  • 相关文献

参考文献9

  • 1Hoppe H,DeRose T,Duchamp T,et al . Surface reconstruction from unorganized points[C ]// Thomas James J. SIGGRAPH'92 Proceedings of the 19th annual conference on Computer graphics and interactive techniques. New York:ACM, 1992,26 (2):71- 78.
  • 2Hoppe H,DeRose T, Duchamp T, et al. Mesh optimization [ C ]//Whitton Mary C. SIGGRAPH'93 Proceedings of the 20th annual conference on Computer graphics and interactive techniques. New York, NY, USA : ACM, 1993,20 : 19-26.
  • 3Edelsbrunner H, Mticke E P. 3D alpha shapes[J]. ACM Trabsactions on Graphics, 1994, 13( 1 ):43-72.
  • 4Amenta N, Bern M, Kamvysselis M. A new Voronor based surface reconstruction algorithm [C ]//Cunningham S, Bransford W, Cohen M. SIGGRAPH'98 Proceedings of the 25th annual conference on Computer graphics and interactive techniques. USA: ACM, 1998,25:415-421.
  • 5林欣.基于模型散乱点的三维物体重建[J].计算机工程与应用,2010,46(3):90-93. 被引量:1
  • 6莫口.基于隐式函数的曲面重构方法及其应用[D].武汉:华中科技大学,2010.
  • 7刘大诚,王玉林.隐函数曲面在车身造型中的应用[J].山东理工大学学报(自然科学版),2006,20(1):39-42. 被引量:2
  • 8Bradle C. Rapid prototyping models generated from machine vision data [ J ].Computer in industry , 2001 (4) : 159-173.
  • 9史松伟,任秉银.三维稀疏散乱点集的直接三角剖分新方法[J].哈尔滨工业大学学报,2005,37(10):1318-1320. 被引量:4

二级参考文献17

  • 1柯映林,周儒荣.实现3D离散点优化三角划分的三维算法[J].计算机辅助设计与图形学学报,1994,6(4):241-248. 被引量:27
  • 2姜寿山,雷志勇.关于三维散乱数据的三角剖分[J].西安工业学院学报,1995,15(1):23-30. 被引量:3
  • 3Hoope H,DeRose T,Duehamp T,et al.Surfaee reconstruction from unorganized points[C]//Cunningham S.Proeeedings of the S IGGRA PH'92.Danvers:Addison Wesley Publishing Company,1992.
  • 4Hoppe H,DeRose T,Duchamp T,et al.Mesh optimization[C]// Cunninghum S.Proceeding of the SIGGRA PH'93.Danvers:Addison Wesley Publishing Company, 1993.
  • 5Foley T A,Hagen H,Nielson G M.Visualizing and modeling unstructured data[J].The Visual Computer International Journal of Computer Graphics, 1993.
  • 6Pratt V.Direct least squares fitting of algebraic surfaces[C]//Stone MC.Proceedings of the S IGGRA PH'87.Danvers:Addison Wesley Publishing Company, 1987.
  • 7Boissonnat J D.Geometric structures for three dimensional shape representation[J].ACM Transactions on Graphics,2004.
  • 8Keppel E.Approximating complex surface interpolation technique for reconstruction 3D objects from serial cross2sections[J].CV GIP, 1999.
  • 9Fuchs H,Kedem Z M,Usehon S P.Optimal surface reconstruction from planar contours[J].Communication of the ACM,1977,20(10): 693-702.
  • 10CIGNONI P, MONTANI C, SCOPIGNOR D.Afast divide and conquer delaunay triangulation algorithm in Ed [J].Computer-Aided Design, 1998, 30(5) :333-341.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部