期刊文献+

应用支持向量机预测绞股蓝茶浸提液中药用成分的含量

Using support vector machine to predict the medicinal ingredients of water extracts of Gynostemma pentaphyllum
下载PDF
导出
摘要 通过支持向量机数学模型预测了绞股蓝茶浸提液中的总酚含量、总黄酮含量及其自由基清除能力,其中浸提条件包括11个浸提温度、5个浸提时间及3个料液比.在4个涉及的支持向量机基本核函数中,径向基核函数表现出最佳的预测效果.在径向基核函数下,用3种参数优化方法:网格参数优化法、遗传优化算法和粒子群优化算法,分别对其模型进行了参数优化.通过比较发现,用粒子群优化算法的径向基核函数支持向量机模型达到了最佳的预测效果,其测试集的相关系数分别达到了0.962 8(预测总酚含量),0.979 7(预测总黄酮含量)和0.951 3(预测自由基清除能力). The total phenols, flavonoids, and antioxidant activity of Gynostemma pentaphyllurn water extracts were predicted by using support vector machine ( SVM ). The extraction conditions included 11 incubation tem-peratures, five incubation times and three different materials to water ratios. Among the four basic kernel func-tions, namely, linear, polynomial, RBF and sigmoid, used in the study, the RBF had the best performance. Three parameter optimization methods, namely, grid search, genetic algorithm, and particle swarm optimiza- tion, were investigated. The results showed that the RBF SVM optimized by particle swarm optimization pro-duced the best correlation coefficients for the testing sets ( 0.962 8 for total phenol content, 0. 979 7 for total flavonoids content, and 0.951 3 for DPPH radical scavenging activity ).
出处 《浙江师范大学学报(自然科学版)》 CAS 2013年第4期450-458,共9页 Journal of Zhejiang Normal University:Natural Sciences
基金 金华市科技项目(2010-3-078 2010-3-079)
关键词 绞股蓝 支持向量机 总酚 总黄酮 自由基清除能力 Gynostemma pentaphyllum support vector machine ( SVM ) phenols flavonoids scavenging ac-tivity
  • 相关文献

参考文献44

  • 1卢金清,肖波,陈黎,喻樊,田耀平,詹晓莲,徐玉婷,万威.分光光度法测定绞股蓝中总皂苷的含量[J].湖北中医杂志,2007,29(1):50-52. 被引量:22
  • 2张涛,张育松.福建甜味绞股蓝茶的保健成分及其市场现状和展望[J].亚热带农业研究,2008,4(2):154-157. 被引量:10
  • 3Vapnik V. Statistical learning theory[M].{H}New York:John Wiley & Sons,Inc,1988.
  • 4Bahlmann C,Haasdonk B,Burkhardt H. On-line handwriting recognition with support vector machines-A Kernel Approach[A].Washington:IEEE Computer Society,2002.49-54.
  • 5Barabino N,Pallavicini M,Petrolini A. Support vector machines vs multi-layer perceptrons in particle identification[A].Belgium:D-Facto Public,1999.257-262.
  • 6Guo Yingchun. An integrated PSO for parameter determination and feature selection of SVR and its application in STLF[A].Baoding:[Conference Publications],2009.359-364.
  • 7Lü Hongfei,Jiang Wu,Ghiassi M. Classification of Camellia (Theaceae) species using leaf architecture variations and pattern recognition techniques[J].PLoS One,2012,(01):e29704.
  • 8Lou Heqiang,Hu Ya,Wang Bin. Dried jujube classification using support vector machine based on fractal parameters and red,green and blue intensity[J].{H}International Journal of Food Science and Technology,2012,(09):1951-1957.
  • 9Chang C C,Lin C J. LIBSVM:a library for support vector machines[J].ACM TIST,2011,(03):1-27.
  • 10宋晖,薛云,张良均.基于SVM分类问题的核函数选择仿真研究[J].计算机与现代化,2011(8):133-136. 被引量:28

二级参考文献90

共引文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部