期刊文献+

粒子群算法实现的防爆正压柜控制器设计 被引量:2

Design of the Explosion-proof Positive Pressure Cabinet Controller Based on PSO
下载PDF
导出
摘要 针对现有的防爆正压柜控制器存在干扰严重、系统响应较慢、超调较大等不足,设计了一种以DSP为核心的防爆正压柜控制器,并采用PID控制器优化系统的控制性能。考虑人工整定PID参数存在性能难以保证的缺点,引入粒子群算法实现了PID参数整定。通过仿真与试验分析显示,该系统可以实现正压调控功能并有效提高系统的稳定性与快速性,基于粒子群算法的PID控制系统必将成为控制系统的发展方向。 Aiming at the demerits of existing explosion-proof positive pressure cabinet controllers, e. g. , severe interference, slow system response, and large overshoot, etc. , the explosion-proof positive pressure cabinet controller with DSP as the core has been designed, and the control performance of PID controller optimal system is adopted. Considering the disadvantage of manually tuning PID parameters is difficult to ensure the performance, the particle swarm optimization ( PSO ) algorithm is introduced to implement PID parameters tuning. The simulation and experimental analysis show that this system provides positive pressure regulation and control function, and improves the stability and system response performance, the PID control system based on PSO algorithm will surely become the direction of development of control systems.
出处 《自动化仪表》 CAS 北大核心 2013年第12期41-43,47,共4页 Process Automation Instrumentation
关键词 DSP 粒子群优化(IX30) 防爆 正压调控 参数整定 控制系统 DSP Particle swarm optimization (PSO) Explosion-proof Positive pressure regulation and control Parameter tuning Control system
  • 相关文献

参考文献9

二级参考文献41

  • 1董胜,孙永山,王利鹏.MSP430F149单片机在基于现场总线的智能差压变送器设计中的应用[J].仪表技术与传感器,2006(1):48-49. 被引量:4
  • 2徐伟巍,刘余.浅析正压型防爆电气控制柜的设计[J].电气防爆,2007(2):23-25. 被引量:15
  • 3GB 3836.4-2000,爆炸性气体环境用电气设备第4部分:本质安全型"i"[S].
  • 4Kennedy J, Eberhart R C. Particle Swarm Optimization// Proc of the IEEE International Conference on Neural Network. Perth, Australia, 1995 : 1942 - 1948.
  • 5Seo J H, Im C H, Heo C G, et al. Muhimodal Function Optimization Based on Particle Swarm Optimization. IEEE Trans on Magnetics, 2006, 42(4) : 1095 - 1098.
  • 6Yi Da, Ge Xiuyun. An Improved PSO-Based ANN with Simulated Annealing Technique. Neurocomputing, 2005, 63:527-533.
  • 7Chatterjee A, Siarry P. A PSO-Aided Neuro-Fuzzy Classifier Employing Linguistic Hedge Concepts. Expert Systems with Applications:An International Journal, 2007, 33 (4) : 1097 - 1109.
  • 8Peram T, Veeramachaneni K, Mohan C K. Fitness-Distance-Ratio Based Particle Swarm Optimization//Proc of the IEEE Swarm Intelligence Symposium. Indianapolis, USA, 2003 : 174 - 181.
  • 9Kaewkamnerdpong B, Peter J B. Perceptive Particle Swarm Optimisation: An Investigation // Proc of the IEEE Swarm Intelligence Symposium. Pasadena, USA, 2005 : 169 - 176.
  • 10Yang Chunming, Simon D. A New Particle Swarm Optimization Technique// Proc of the 18th International Conference on Systems Engineering. Las Vegas, USA, 2005 : 164 - 169.

共引文献106

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部