期刊文献+

基于噪点抑制的聚类有效性评价函数构建

Construction of clustering validity evaluation function based on noise suppression
下载PDF
导出
摘要 针对传统聚类有效性评价函数中没有利用到数据集结构信息和噪点删除过量等问题,提出一种新的聚类有效性评价函数。该函数由紧密性度量与分离性度量组成,在紧密性度量中加入距离函数表示数据集几何结构,避免单一理论给评价带来的不全面性;在分离性度量中,设定距离临界值L,与原有的隶属度临界值T两者之间的相互约束,减少删除噪点的数量,避免因数据信息丢失对评价结果造成的不准确性。最后,将新构建的评价函数与原函数进行对比实验,结果表明该方法具有更好的适用性。 As traditional clustering validity evaluation function did not take advantage of the structure information of the data set, and deleted excessive noise, this paper designed a new clustering validity evaluation function. The function was composed by the tightness measure and separability measure, and distance function was added to the tightness measure to represent the geometric structure of the data set, to avoid being not comprehensive if evaluated by a single theory. In separability measure, it set the distance threshold L and being mutual restraint on original membership threshold T to reduce the amount of noise deleted, to avoid inaccuracies that was caused by loss of data information on the evaluation results. Finally, the new building of the evaluation function compared with the original function of experimental results show that the proposed method has better applicability.
出处 《计算机应用研究》 CSCD 北大核心 2014年第1期37-39,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(71072085 71272191) 黑龙江省研究生创新基金重点资助项目(YJSCX2011-003HLJ) 黑龙江省高等学校哲学社会科学创新团队建设计划资助项目(TD201203)
关键词 聚类分析 有效性评价函数 紧密性度量 分离性度量 噪点抑制 cluster analysis effectiveness evaluation function tightness measure separability measure noise
  • 相关文献

参考文献13

  • 1彭勇,吴友情.一种新的聚类有效性函数[J].计算机工程与应用,2010,46(6):124-126. 被引量:8
  • 2DUNN J C. Well-separated clusters and the optimal fuzzy partitions [ J]. Journal of Cybernetics, 1974, 4( 1 ) :95-104.
  • 3MAULIK U, BANDYOPADHYA S. Performance evaluation of some clustering algorithms and validity indices[J]. Pattern Analysis and Machine Intelligence, 2002, 24 (12) : 1650-1654.
  • 4CALINSIK T, HARABASZ J. A dendrite method for cluster analysis [ J]. Communications in Statistics, 1974, 3 ( 1 ) : 1- 27.
  • 5BEZDEK J C. Numerical taxonomy with fuzzy sets [ J]. Journal of Mathematical Biology, 1974, 1 ( 1 ) :57-71.
  • 6BEZDEK J C. Cluster validity with fuzzy sets[ J]. Journal of Cyber- netics, 1973, 3(3) :58-73.
  • 7WINDHAM M P. Cluster validity for fuzzy clustering algorithms [ J ]. Fuzzy Sets and Systems, 1981,5 ( 2 ) : 177-185.
  • 8ZAHID N, LIMOURI M, ESSAID A. A new cluster-validity for fuzzy clustering[ J ]. Pattern Recognition, 1999, 32 (7) : 1089-1097.
  • 9XIE Xuan-li, BENI G. A validity measure for fuzzy clustering [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991, 13(8): 841-847.
  • 10唐明会,杨燕.模糊聚类有效性的研究进展[J].计算机工程与科学,2009,31(9):122-124. 被引量:11

二级参考文献36

  • 1陈业华,黄元美,高峰.基于模糊熵的聚类有效性分析[J].燕山大学学报,2007,31(1):44-46. 被引量:2
  • 2李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 3李洁,高新波,焦李成.一种基于修正划分模糊度的聚类有效性函数[J].系统工程与电子技术,2005,27(4):723-726. 被引量:8
  • 4安中华,安琼.模糊聚类的有效性研究[J].湖北大学学报(自然科学版),2006,28(3):222-226. 被引量:11
  • 5Halkid I M, Vazirgiannis M, Batistakis Y. Quality Scheme Assessment in the Clustering Process[C]//Proc of the 4th Eur Conf Principles and Practice of Knowledge Discovery in Databases, 2000 : 165-276.
  • 6Bedzek J C. Cluster Validity with Fuzzy Sets[J]. Journal of Cybernetics, 1973,3(3) : 58-72.
  • 7Shannon C E. A Mathematical Theory of Communication[J]. Bell Syst Tech, 1948, XXVII (3) : 379-423.
  • 8Xie X L, Beni G. A Validity Measure for Fuzzy Clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991,8(13) :841-847.
  • 9Rhee H. A Validity Measure for Fuzzy Clustering and Its Use in Selecting Optimal Number of Clusters[C]//Proe of the 5th IEEE Int'l Conf on Fuzzy System, 1996:1020-1025.
  • 10Kwon S H. Cluster Validity Index for Fuzzy Clustering[J]. Electronics Letters, 1998,34(22) :2176-2177.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部