期刊文献+

符号网络研究综述 被引量:44

Survey of Signed Network Research
下载PDF
导出
摘要 符号网络是指边具有正或负符号属性的网络,其中,正边和负边分别表示积极的关系和消极的关系.真实世界的许多复杂网络中都存在对立的关系,尤其是在信息、生物和社会领域.利用边的符号属性去分析、理解和预测这些复杂网络的拓扑结构、功能、动力学行为具有十分重要的理论意义,并且对个性化推荐、态度预测、用户特征分析与聚类等都具有重要的应用价值.然而,当前人们对网络的符号属性关注较少.综述了符号网络的研究背景及意义、国内外研究现状和最新进展,并讨论了目前存在的主要问题,试图让人们对符号网络这一研究方向能有清晰而全面的认识,为网络数据挖掘、复杂网络分析、社会学、生物信息学等相关领域的研究者提供有益的参考. Signed network is a kind of network including edges with the property of positive or negative sign. The positive and negative sign represent positive relationship and negative relationship, respectively. Many real complex networks have opposite relationships, especially in social, biological and information fields. Using the sign properties of edges to analysis, understand and predict the topological structures, functions and dynamic behaviors of these real networks has important theoretical significance and practical applications, such as personalized recommendation, prediction of attitudes, user analysis and clustering and so on. However, academic research has devoted little attention to signed network. This paper reviews the background, significance, research situation and recent progress of signed networks, and discusses the main problems of existing works. This study is to provide a clear and comprehensive understanding to this meaningful research area, and to benefit to the researchers from the fields of network data mining, complex network analysis, sociolo,,v and biological information.
出处 《软件学报》 EI CSCD 北大核心 2014年第1期1-15,共15页 Journal of Software
基金 国家重点基础研究发展计划(973)(2012CB316303) 国家科技支撑计划(2012BAH39B04) 国家自然科学基金(61232010 61202215 61174152) 北京市自然科学基金(4122077)
关键词 符号网络 网络科学 网络拓扑 拓扑分析 在线社会网络 复杂性科学 signed network network science network topology topology analysis online social network, complexity science
  • 相关文献

参考文献1

二级参考文献11

  • 1YANG B,CHEUNG W,LIUJ.Community mining from signed so-cial networks. IEEE Transactions on Knowledge and Data Engi-neering . 2007
  • 2Albert R,Jeong H,Barabusi AL.Diameter of the world-wide web. Nature . 1999
  • 3Yang B,,Liu J,Feng J F,et al.On modularity of social network communities:the spectral characterization. Proceedings of2008IEEE/WIC/ACM Joint Conferences on Web Intelligence and Intelligent Agent . 2008
  • 4Palla,G,Derenyi,I,Farkas,I,Vicsek,T.Uncovering the overlapping community structure of complex networks in nature and society. Nature . 2005
  • 5Guimera R,Amaral LAN.Functional cartography of complex metabolic networks. Nature . 2005
  • 6Flake GW,Lawrence SR,Giles CL,et al.Self-organization and identification of web communities. IEEE Computer . 2002
  • 7Girvan M,Newman M E J.Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America . 2002
  • 8Milgram S.The small world problem. Psychology Today . 1967
  • 9Radicchi F,Castellano C,Cecconi F,et al.Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America . 2004
  • 10Newman,MEJ.Fast algorithm for detecting community structure in networks. Physical Review E Statistical, Nonlinear and Soft Matter Physics . 2004

共引文献4

同被引文献247

引证文献44

二级引证文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部