期刊文献+

基于可穿戴传感器的驾驶疲劳肌心电信号分析 被引量:6

An Analysis on EMG and ECG Signals for Driving Fatigue Detection Based on Wearable Sensor
下载PDF
导出
摘要 本文通过对驾驶员的肌电信号与心电信号的研究,检测驾驶员驾车过程中的疲劳状态。对8名被试者进行2h的驾驶模拟实验。利用可穿戴式传感器采集被试者股二头肌部位的生理信号,采用快速独立成分分析和经验模态分解算法对测得的信号进行分离和去噪处理,得到肌电、心电信号,并找出能表征驾驶员疲劳的肌电和心电特性参数,运用统计分析SPSS软件进行Kolmogorov-Smirnov Z检验,最终选取肌电信号峰值因数和肌心电信号互相关峰值(P<0.001)作为组合特征,并采用马氏距离作为判别疲劳的准则。结果表明,该方法在对驾驶员正常状态与疲劳状态的区分上有良好的识别效果。 The fatigue states of drivers during driving are detected based on the study on the EMG and ECG signals of drivers in this paper. Firstly eight testees take part in an experiment by driving on driving simulator for two hours, putting on wearable sensor to collect their physiological signals of biceps femoris. Then separation and denoising treatments are conducted on the signals collected with FastlCA and EMD algorithm to obtain the EMG and ECG signals, and the electrocardiographic and electromyographic characteristic parameters representing the extent of driver's fatigue are found and subjected to Kolmogorov-Smirnov Z test by statistical software SPSS. Finally the peak value factor of EMG signal and the peak value of correlation between electrocardiographic and electromyographic sig- nals are selected as combined features with Mahalanobis distance as criteria for fatigue judgment. The results show that the method proposed has good identification effect in distinguishing the normal and fatigue states of drivers.
出处 《汽车工程》 EI CSCD 北大核心 2013年第12期1143-1148,共6页 Automotive Engineering
基金 国家自然科学基金(61071057) 中央高校基本科研业务费项目(N100603003)资助
关键词 驾驶疲劳 传感器 肌电信号 心电信号 马氏距离 driving fatigue sensor EMG ECG Mahalanobis distance
  • 相关文献

参考文献9

  • 1Riccardo Rossi,Massimiliano Gastaldi. Analysis of Driver Task-related Fatigue Using Driving Simulator Experiments[J].Procedia Social and Behavioral Sciences,2011.666-675.
  • 2Gregoire S Larue,Andry Rakotonirainy. Driving Performance Impairments Due to Hypovigilance on Monotonous Roads[J].{H}Accident Analysis and Prevention,2011.2037-2046.
  • 3Michel Grabisch,Jacques Duchene. Subjective Evaluation of Discomfort in Sitting Positions[J].Fuzzy Optimization and Decision Making,2002.287-312.
  • 4Carolyn H Declerck,Christophe Boone. On Feeling in Control:A Biological Theory for Individual Differences in Control Perception[J].{H}BRAIN AND COGNITION,2006,(02):143-176.
  • 5Eike A Schmidt,Michael Schrauf. Driver's Misjudgment of Vigilance State During Prolonged Monotonous Daytime Driving[J].{H}Accident Analysis and Prevention,2009.1087-1093.
  • 6Jacques Duchene,Thibault Lamotte. Surface Electromyography Analysis in Long-term Recordings:Application to Head Rest Comfort in Cars[J].{H}ERGONOMICS,2001,(03):313-327.
  • 7James C J,Lowe D. Single Channel Analysis of Electromagnetic Brain Signals Through ICA in a Dynamical Systems Framework[A].2001.1974-1977.
  • 8胡广书.数字信号处理-理论算法与实现[M]{H}北京:清华大学出版社,2003.
  • 9王岩;隋思涟.数理统计与MATLAB工程数据分析[M]{H}北京:清华大学出版社,2006.

同被引文献48

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部