期刊文献+

动态反应池-电感耦合等离子体质谱法直接测定高盐氯化钙型地下水中的痕量总砷 被引量:6

Determination of Arsenic in High Salinity and Calcium Chloride Type Groundwater by Dynamic Reaction Cell-Inductively Coupled Plasma Mass Spectrometry
下载PDF
导出
摘要 采用O2作为反应气,将75As+氧化成75As16O+后在m/z 91处测定,有效消除了m/z 75处40Ar35Cl+,40Ca35Cl+,39K36Ar+形成的质谱干扰,建立了电感耦合等离子体质谱法(ICP-MS)直接测定高盐氯化钙型地下水中痕量总砷的方法。优化了反应池(DRC)的参数,在O2流速为0.1 mL/min,反应池抑制参数R pq=0.55时,背景等效浓度(BEC)最小。样品中加入3%甲醇可以提高75As16O+的信号强度3.6倍。方法采用海水标准物质NASS-4和CASS-5进行了验证,结果令人满意。方法的检出限为0.01μg/L,1.0μg/L As的7次平行测定的相对标准偏差为1.8%。 A new procedure for the direct determination of total arsenic in high salinity and CaCl2 type groundwater has been developed. In order to remove the polyatomic interferences 40Ar35Cl+,40Ca35Cl+,39K36Ar+ arising from the direct analysis of high salinity and CaC12 type groundwater, 75As+, the mass for general detection, was effectively changed to 75As160+ which could be detected at m/z 91 by reaction with oxygen in a Dynamic Reaction Cell (DRC). The DRC parameters were optimized, the background equivalent concentration (BEC) was minimum when 02 gas flow rate was 0. 1 mL/min and the rejection parameter q (RPq) of DRC was 0.55. The signal intensity of 75As160+ was improved 4-fold by addition of 3% methanol into sample solution. The accuracy was verified by the analysis of certified reference materials of sea-water (CASS-5, NASS-4). Detection limits of 0. 011μg/L and the relative standard deviation of 1.8% were obtained.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第12期1915-1918,共4页 Chinese Journal of Analytical Chemistry
基金 国家重点基础研究发展计划(No.2010CB428801) 国家自然科学基金(No.21207120)资助
关键词 电感耦合等离子体质谱 总砷 氯化钙 高盐地下水 Inductively coupled plasma mass spectrometry Arsenic Calcium chloride type groundwater High salinity groundwater
  • 相关文献

参考文献24

  • 1Sarkar B, Solaiman A H M, Das A K, Chowdhury D A. J. Exper. Sci., 2011, 2(1): 38-41.
  • 2Buragohain M, Sarma H P. Sci. Revs. Chem. Commun., 2012, 2(1): 7-11.
  • 3刘希光,于华华,赵增芹,李智恩,徐祖洪,李鹏程.微波消解-氢化物发生-原子荧光法测定海蜇中的痕量砷和硒[J].光谱学与光谱分析,2005,25(6):964-967. 被引量:27
  • 4郭华明,刘春华.阴离子交换柱分离不同价态砷的研究及其应用[J].分析化学,2012,40(7):1092-1097. 被引量:3
  • 5Hu S, Lu J S, Jing C Y. Journal of Environmental Sciences, 2012, 24(7): 1341-1346.
  • 6Polizzotto M L, Kocar B D, Benner S G, Sampson M, Fendorf S. Nature, 2008, 454, 505-508.
  • 7Cheng Z, Zheng Y, Mortlock R, Geen A V. Anal. Bioanal. Chem., 2004, 379(3): 512-518.
  • 8Chakraborti D, Jonghe W D, Adams F. Anal. Chim. Acta, 1980, 119(2): 331-340.
  • 9Zhang L, Morita Y, Sakuragawa A, Isozaki A. Talanta, 2007, 72(2): 723-729.
  • 10Andreae M O. Anal. Chem., 1977, 49(6): 820-823.

二级参考文献36

  • 1Hsieh Yun-hwa, Leong Fui-ming, Barnes K W. J. Agric. Food Chem., 1996, 44: 3117.
  • 2Semenova N V, Leal L O, Forteza R, et al. Analytica Chimica Acta, 2003, 486: 217.
  • 3WANGNing-sheng etal(王宁生 ).Traditional Chinese Drug Research and Clinical Pharmacology(中药新药与临床药理),2002,13(4):244-244.
  • 4Cava-Montesinos P, Cervera M L, Pastor A. Analytica Chimica Acta, 2003, 481: 291.
  • 5WUYun-qing etal(伍云卿 ).Chin. J. Public Health(中国公共卫生),2003,19(5):614-614.
  • 6Krishna M, Chandrasekaran K, Karunasagar D, Arunachalam J. J. Hazard. Mater., 2001, 84(2-3): 229-240.
  • 7Guo H M, Yan-z S Z, Tank X H, Li Y, Shen Z L. Sci. Total Environ. , 2008, 393(1): 131-144.
  • 8JIN Yin-Long, LIANG Chao-Ke, HE Gong-Li, CAO Jing-Xiang, MA Feng, WANG Han-Zhang, YING Bo, JI Rong-Di. J. HygieneRes., 2003, 32(6): 519-539.
  • 9Korte N E, Fernando Q. Crit. Rev. Environ. Control, 1991, 21(1): 1-39.
  • 10GUO Xue-Jun, CHEN Pu-Hua. Chem. J. Chinese Universities. , 2005, 26(7): 1248-1251.

共引文献28

同被引文献77

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部