期刊文献+

基于局部二元模式的快速红外人脸识别系统 被引量:6

Fast thermal infrared face recognition system based on local binary pattern
原文传递
导出
摘要 红外人脸成像具有对光照、人脸皮肤、表情、姿态等因素变化不敏感的特点,可以在一定程度上弥补这些因素对可见光人脸识别影响的不足。为了充分提取红外人的局部鉴别特征,文中提出了一个基于局部二元模式的快速红外人脸识别系统。该系统首先通过thermoVision A40型红外热像仪获分辨率为320×240的红外人脸图像,并通过人脸检测和归一化方法提取大小为60×80的标准红外人脸图像。其次,基于人脸图像的对称性,将红外人脸图像分块。通过局部二元模式直方图提取每一分块所包含的纹理模式特征。最后,采用Kruskal-Wallis(KW)特征选择算法,进一步抽取对识别有贡献的局部纹理特征用于分类识别。实验结果表明:提出的热红外人脸系统识别率明显优于基于主成分分析(PCA)和线性鉴别分析(LDA)的传统红外人脸识别系统,可以达到98.6%的识别率。与此同时,提出的红外人脸识别系统识别速度也快于传统基于PCA和LDA系统,可以广泛应用于实时人脸识别中。 Infrared face recognition, being light - independent, and not vulnerable to facial skin, expressions and posture, can avoid or limit the drawbacks of face recognition in visible light. In this paper, a fast infrared face recognition system based on local features was proposed. Firstly, the original IR images captured by an IR camera thermoVision A40 were 320×240 pixels. The sensitivity was as high as 0.08 ℃, the face image was normalized to size of 60 ×80 by preprocessing and face detection. Secondly, based on the symmetry of face, the whole infrared face image was divided into small sub-blocks. To make full use of the local features of infrared face image, a local binary pattern (LBP) was chosen to get the composition of micropatterns of sub-blocks. Finally, Kruskal-Wallis (KW) feature selection method was proposed to improve the effectiveness of discriminant feature extraction. The experiment results illustrate that the system recognition rate can reach 98.6%, outperform the traditional methods based on Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Furthermore, the speed of proposed system is much faster than the traditional methods and can be used in real-time face recognition system.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第12期3190-3195,共6页 Infrared and Laser Engineering
基金 国家自然科学基金(61201456) 江西自然科学基金(20132BAB201052)
关键词 红外人脸识别 局部二元模式 特征选择 KW检验 infrared face recognition local binary pattern feature selection KW test
  • 相关文献

参考文献17

  • 1Han Hu, Shan Shiguang, Chen Xilin, et al. A comparative study on illumination preprocessing in face recognition [J]. Pattern Recognition, 2013, 46(6): 1691-1699.
  • 2Wu S Q, Jiang L J, Cheng L, et al. RIFARS: a real-time infrared face recognition system [C]//Asian Biometrics Workshop, 2003: 1-6.
  • 3华顺刚,周羽,刘婷.基于PCA+LDA的热红外成像人脸识别[J].模式识别与人工智能,2008,21(2):160-164. 被引量:25
  • 4Li S Z, Chu R, Liao S C. Illumination invariant face recognition using near -infrared images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007, 29(4): 627-639.
  • 5Wu S Q, Li W S, Xie S L. Skin heat transfer model of facial thermograms and its application in face recognition[J]. Pattern Recognition, 2008, 41(8): 2718-2729.
  • 6Hermosilla G. A comparative study of thermal face recognition methods in unconstrained environments [J]. Pattern Recognition, 2012, 45(7): 2445-2459.
  • 7张燕昆,刘重庆.一种新颖的基于LDA的人脸识别方法(英文)[J].红外与毫米波学报,2003,22(5):327-330. 被引量:16
  • 8李燕,汤心溢,葛军,张浩钧.基于FPGA的多通道红外图像实时采集系统[J].红外与激光工程,2012,41(5):1363-1368. 被引量:14
  • 9李江,郁文贤,匡刚要,宋海娜.红外图像人脸识别方法[J].国防科技大学学报,2006,28(2):73-76. 被引量:16
  • 10Ahonen T, Hadid A, Pietik"ainen M. Face description with local binary patterns: application to face recognition. [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.

二级参考文献45

共引文献103

同被引文献37

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部