期刊文献+

采用支持向量机图形用户界面的电力负荷组合预测方法

Combined Power Load Forecasting Method Using Support Vector Machine Graphical User Interface
下载PDF
导出
摘要 运用多种预测方法对中长期电力负荷预测所得结果会相差甚远,而综合各方法的组合预测能够避免其偏颇。由于在小样本和非线性拟合能力方面的优势,支持向量机方法被用于组合预测:多种传统方法预测值作为输入,拟合输入与输出之间的非线性关系,求得预测结果。针对SVM在处理回归问题时算法编程及参数寻优较为复杂的问题,提出了一种基于SVM图形用户界面(Graphical User Interface,GUI)工具箱的组合预测方法。算例分析表明,运用该方法,在预测过程中可直观、方便地应用通用软件工具包,且预测精度较高,便于推广和工程应用。 The long-term power load forecasting results obtailled by a variety of forecasting methods are a far cry. The combined forecasting approach synthesizes various methods to avoid bias. Due to the advantages of the small sample and non-linear fitting ability, support vector machine (SVM) method is used for combining forecasts. The predictive values of a variety of methods are employed as input to fit non-linear relationship between input and out- put and obtain the predicted results. To reduce the complexity of algorithm programming and parameter optimization by using SVM for regression problem, a combination forecasting method based on SVM graphical user interface tool- kit is proposed. The example shows that the application of general-purpose software toolkit in the forecasting process is intuitive and convenient, predicted result is accuracy, and the proposed method is convenient for engineering ap- plications.
出处 《电力科学与工程》 2013年第12期18-22,共5页 Electric Power Science and Engineering
基金 国家自然科学基金资助项目(51277016) 湖南省高校创新平台开放基金项目(12K074)
关键词 电力负荷 组合预测 支持向量机 图形用户界面 electric load combination forecasting support vector machine graphical user interface
  • 相关文献

参考文献14

二级参考文献43

共引文献525

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部