期刊文献+

视频中关键人体姿态的识别 被引量:5

Key Human Postures Recognition in Videos
下载PDF
导出
摘要 视频理解是当前计算机视觉领域中的研究热点.提高监控视频的计算效率和人体姿态的识别精度仍然是挑战,本文提出一种识别视频关键帧中人体姿态的方法.首先通过计算视频中帧间的覆盖率和失真率,提取关键帧;然后抽取关键帧中人体姿态轮廓的多种特征,建立多特征融合的姿态描述算子;在自采集和公用数据上构建标准姿态的特征库,用于训练基于支持向量机的多类分类器,以实现人体姿态的识别.实验表明,本文方法实现了11种人体运动姿态的识别,在识别效率和精度上具有令人满意的结果. Machine understanding of video is a hot study area in computer vision. It's still keeping a challenge to improve the compu- tation efficiency for videos and recognization accuracy for human actions in surveillance. In this paper, an algorithm is proposed to recognize human body postures in key frames from a video. Firstly, key frames are extracted by computing coverage rate and distortion rate among frames in a video. Then, we construct a posture descriptor with multiple features fusion. The multiple features are extracted from posture silhouette in the key frame. Multi-categories supported vector machine classifier is trained with a standard feature library to recognize the different human postures. The feature library is constructed on the public available database and a part of selfcollected datum. The results demonstrate that 11 different human postures can be recognized using the proposed method with satisfying efficiency and accuracy.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第1期167-171,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070114)资助 浙江省可视媒体智能处理技术研究重点实验室项目(2011E10003)资助
关键词 关键帧 姿态识别 覆盖率 失真率 多特征融合 支持向量机 key frame posture recognition coverage rate distortion rate multiple features fusion supported vector machine
  • 相关文献

参考文献4

二级参考文献129

  • 1吴思,张勇东,林守勋,李豪杰.动态场景视频序列中的前景区域自动提取[J].计算机辅助设计与图形学学报,2005,17(2):359-363. 被引量:6
  • 2[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 3[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 4[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 5[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 6[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 7[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 8[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 9[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 10[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964

共引文献296

同被引文献35

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部