期刊文献+

基于粒子群的大量信息模糊检索 被引量:1

Fuzzy Retrieval of Large Information Based on PSO
下载PDF
导出
摘要 为了改善随着信息量增加信息检索效率急剧降低的情况,将改进的粒子群优化算法引入信息检索中,通过粒子群算法迭代检索,使关键检索字在大量信息点上模糊匹配,在迭代终止时检索出匹配度最高的信息项。对100万到2亿条信息量的信息进行检索实验,检索时间1.7 s左右,匹配度高于97%。该方法检索速度快、稳定、匹配度高且鲁棒性强。 As the amount of information increases, the efficiency of information retrieval was drastically reduced. The information retrieval based on the improved PSO was discussed on this paper. This PSO Iterative search, makes Key search word fuzzy matching on a large number of information points, finds the best item of information at the item end. From 1 million to 200 million items information test, retrieval time is around 1.7 seconds, matching degree is higher than 97%. This method shows that the improved PSO has the fast, stable, high degree of matching and the robustness.
出处 《西南科技大学学报》 CAS 2013年第4期53-56,101,共5页 Journal of Southwest University of Science and Technology
基金 陕西省软科学基金项目(2012KRM58) 陕西省教育厅自然科学基金项目(12JK0744 11JK0188)
关键词 粒子群优化(PSO) 模糊检索 匹配度 PSO Fuzzy retrieval Matching degree
  • 相关文献

参考文献11

  • 1张兴华.搜索引擎技术及研究[J].现代情报,2004,24(4):142-145. 被引量:35
  • 2BARILAN J. Comparing rankings of search results on the Web [ J ]. Information Processing and Management, 2004 (41) :1511 - 1519.
  • 3王继成,萧嵘,孙正兴,张福炎.Web信息检索研究进展[J].计算机研究与发展,2001,38(2):187-193. 被引量:118
  • 4SILVA A S Da, VELOSO E A, GOLGHER P B, et al. Co B Web A Crawler for the Brazilian Web [ C ]. String Processing and Information Retrieval Symposium, 1999.
  • 5VU L, HAUSWIRTH M, ABEREER K. QoS- based Service Selection and Ranking with Trust and Reputation Management [ C 1. OTM Confederated International Con- ferences. Chvpre, France: [ s.n. ] : 2005.466- 483.
  • 6邓义乔,张代远.蚁群算法在搜索引擎系统中的应用研究[J].计算机技术与发展,2009,19(12):21-24. 被引量:3
  • 7YANG J J, KORFHAGER. Query Optimization in Infor- mation Retrieval Using Genetic Algorithms [ C ]. Proceed- ings of the Fifth International Conference on Genetic Al- gorithms, 1993. 603 - 611.
  • 8姜小伟.粒子群算法在查询优化中的应用[D].哈尔滨:哈尔滨理工大学,2010.
  • 9KENNEDY J, EBERHART R C. Particle Swarm Optimi- zation[A]. In: Proceedings of IEEE International Con- ference on Neutral Networks[ C]. Australia, 1995, (4) : 1942 - 1948.
  • 10FERN' ANDEZMART' INEZ J L, GONZALO E G. TheGeneralized PSO A New Door to PSO Evolution on Hindawi Publishing Corporation [ J ]. Journal of Artificial Evolution and Applications, 2008, (10) : 11 - 30.

二级参考文献26

  • 1赵晓怡,杨明福,黄桂敏.基于蚁群算法的对等网模拟器的设计与实现[J].计算机应用与软件,2005,22(1):85-87. 被引量:3
  • 2蓝慧琴,钟诚,李智.一种基于蚁群算法的非结构化P2P网络搜索算法[J].计算机技术与发展,2006,16(10):26-28. 被引量:4
  • 3王继成 邹涛 等.网络信息搜集与出版系统WinGPS.南京大学计算机科学与技术系,科技报告[M].,1999..
  • 4Dofigo M, Stutzle T. Ant Colony Optimization[ M]. USA: Massachusetts Institute of Technology,2004.
  • 5Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem [J ]. IEEE Transactions on Evolutionary Computations, 1997, 1(1) :53-66.
  • 6Michlmayr E, Graf S, Siberski W, et al. Query Routing with Ants[ C]//In:Proc of the Workshop on Ontologles in Peer - to - Peer Communities, European Semantic Web Conference. Heraldion, Greece: [ s. n.]. 2005 : 35 - 46.
  • 7王继成,科技报告,1999年
  • 8董振东 董强.知网[EB/OL].http:∥www.keenage.com.,.
  • 9Nirenburg S.Two approaches of matching in example-based machine translation.In:Proc TMI-93.Kyoto,Japan,1993
  • 10Li S,Zhang J,et al.Journal of Computer Science and Technology,2002,17(6):933

共引文献217

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部