期刊文献+

自适应扩散张量的各向异性图像去噪

Diffusion tensors for anisotropic image denoising
下载PDF
导出
摘要 图像去噪过程中,为了在有效平滑噪声的同时较好地保护图像的边缘和细节,提出了基于扩散张量的自适应去噪模型。该模型设计了随梯度大小变化的边缘增强扩散张量,改进了结构张量。在图像质量评判标准中,提出了基于相关系数函数的最佳停止时间评判准则。实验结果表明,改进的模型优于传统各向异性扩散模型,且能很好地吻合评判准则。 In the process of image denoising, in order to remove noise effecitively and preserve edges and key details, the adapative diffusion tensor denoising model was proposed. A new diffusion tensor of edge enhancement according to gradient value was designed and the structure tensor was improved in the model. The best stop time evaluation criteria based on correlation coefficient was proposed as well. The experimental results show that the improved model is superior to traditional anisotropie diffusion model, and can better coincide with the judge standard.
出处 《计算机应用》 CSCD 北大核心 2013年第A02期168-170,208,共4页 journal of Computer Applications
基金 重庆市自然科学基金资助项目(CSPC,2005BB2197) 重庆大学“211工程”三期创新人才培养计划建设基金资助项目(S-09110)
关键词 图像去噪 扩散张量 自适应 相关系数 image denosing diffusion tensor adapative correlation coefficient
  • 相关文献

参考文献14

  • 1PEKONA P, MALIK J. Scale-space and edge detection using aniso-tropic di.fusion[ J]. IEEE Transactions on Pattern Recgonition andMachine Intelligence,1990, 12(7): 629 - 639.
  • 2CATTLE F, LIONS P L, MOREL J M. Image selective smoothingand edge detection by nonlinear diffusion [ J] . Society for Industrialand Applied Mathematics Journal on Numerical Analysis, 1992, 29(1):182-193.
  • 3ALVAREZ L, LIONS P L, MOREL J M. Image selective smoothingand edge detection by nonlinear diffusion[ J]. Society for Industrialand Applied Mathematics Journal on Numerical Analysis, 1992,29(3):845 -866.
  • 4WEICKERT J. Theoretical foundations of anisotropic diffusion in im-age piocessing[ C]// Proceedings of the 7th Conference on Theoreti-cal Foundations of Computer Vision. London: Springer-Verlag,1996: 221 -236.
  • 5WEICKEHT J. Anisotropic diffusion in image processing[ M]. Stutt-gart: Teubner-Verlag, 1998.
  • 6FAOUZI B, AMIRI H. Image denoising using non linear diffusiontensors[ JJ. Advances in Computing, 2012, 2(1): 12 - 16.
  • 7王卫卫,韩雨,冯象初.基于非局部扩散的图像去噪[J].光学学报,2010,30(2):373-377. 被引量:13
  • 8UU F, LIU J B. Anisotropic division for image denoting based ondi.Eun<MiJ]. Joumal of Visual Communication and ImageRepresentation, 2012,23(3):516 - 521.
  • 9YU X, WU C, TONG J,找 o/. A time-dependent anisotropic diffu-sion image smoothing method[ C] // Proce.3ings ^)11 2nd Inter-national Conference on IEEE IntelHg^it Control and Information Pro-cessing. Piscataway: IEEE, 2011, 2: 859-862.
  • 10MRAZEK P, NAVARA M. Selection qptimal stopping time fornonlinear difhision filtering[ J]. Internationa Joumal of ComputerVision, 2003, 52(2/3):189 - 203.

二级参考文献18

  • 1刘德连,张建奇.基于纹理分割的遥感图像的变化探测[J].光学学报,2006,26(8):1177-1181. 被引量:8
  • 2G. Aubert, P. Kornprobst. Mathematical Problems in Image Processing[M]. Stuttgart: Springer-Verlag, 2002.
  • 3P. Perona, J. Malik. A scale space and edge detection using anisotropic diffusion[J]. IEEE Transactions on PAMI, 1990,12(07): 629-639.
  • 4F. Catte, P. L. Louis, J. M. Morel et al.. Image selective smoothing and edge-detection by nonlinear diffusion[J]. SIAM Journal on Numerical Analysis, 1992, 29(01): 182-193.
  • 5L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60:259-268.
  • 6J. Weickert. Anisotropic diffusion in image processing [M]. Stuttgart: Springer-Verlag, 1998.
  • 7Wang Weiwei, Feng Xiangchu. Anisotropic diffusion with nonlinear structure tensor[J]. Multiscale Model. Simul. , 2008, 7(02) : 963-977.
  • 8Bai Jian, Feng Xiangchu. Fractional-order anisotropic diffusion for image denoising [J]. IEEE Transactions on Image Processing, 2007, 16(10): 2492-2502.
  • 9G. Gilboa, S. Osher. Nonlocal operators with applications to image processing[J]. Multiscale Model. Simul. , 2008, 7 (3) 1005-1028.
  • 10S. Kindermann, S. Osher, P. Jones. Deblurring and denoising of images by nonlocal functionals[J]. Multiscale Model. Simul. , 2005, 4(4) : 1091-2115.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部