期刊文献+

基于免疫算法的热成像作用空间分辨率研究

Thermal Imaging Operating Spatial Resolution Based on Immune Algorithm
下载PDF
导出
摘要 借鉴生物免疫机制,提出一种基于免疫算法的自动目标识别性能与热成像分辨率关系的分析方法,研究热红外目标在不同分辨等级(发现、识别、确认)所需的热成像空间分辨率。该方法以红外多分辨率目标作为研究对象,根据免疫机制的反向选择原理计算各分辨率对应的配准概率,并与设定门限比较,从而给出热红外目标在各任务等级的最低分辨率要求。最后以计算机仿真的红外目标为例进行了验证。 In order to research desired imaging resolution of thermal target under different discrimination levels, including detection, recognition, and identification, by referring to biological immune mechanism, a new method based on immune algorithm, which is used to analyze the relation between target recognition performance and thermal imaging resolution, is proposed. Taking infrared multi-resolution targets as the study objects, we compute registration probability under different resolution levels based on negative selective theory of im- mune mechanism, and compare with the set thresholds, so the desired lowest imaging resolutions of thermal target under different task grades are obtained. Finally, taking a computer simulated infrared target for example, the experiment results are given.
出处 《计算机与数字工程》 2013年第12期1970-1972,共3页 Computer & Digital Engineering
基金 湖北省自然科学基金资助项目(2012FFB04711)资助
关键词 热成像 空间分辨率 目标识别性能 免疫算法 thermal imaging, spatial resolution, performance of target recognition, immune algorithm
  • 相关文献

参考文献9

  • 1Leachtenauer J C. Resolution requirements and the Johnson criteria revisited[C]//AeroSense 2003. International Society for Optics and Photonics, 2003: 1-15.
  • 2Vollmerhausen R H, Jaeobs E, Driggers R G. New metric for predicting target acquisition performance [J ]. Optical Engi- neering, 2004,43 (11) : 2806-2818.
  • 3李润顺,袁祥岩,范志刚,左保军.红外成像系统作用距离的估算[J].红外与激光工程,2001,30(1):1-3. 被引量:33
  • 4W. H. Diao, X. Mao, L. Chang, et al. Operating distance evalu- ation method for infrared imaging system under complicated back- grounds[J]. Electronics Letters, 2009,45(25) : 1309-1310.
  • 5王晓蕊,张建奇.基于机器视觉的红外成像系统探测性能评估[J].红外与毫米波学报,2003,22(4):273-276. 被引量:9
  • 6王晓蕊,张建奇,左月萍.红外成像系统性能模型的研究进展[J].红外与激光工程,2002,31(5):399-403. 被引量:7
  • 7Sasaki M, Kawafuku M, Takahashi K. An immune feedback mechanism based adaptive learning of neural network control- ler[C]//Neural Information Processing, 1999. Proceedings. ICONIP'99. 6th International Conference on. IEEE, 1999,2: 502-507.
  • 8刘芳,戚玉涛,公茂果.免疫克隆分类算法[J].电子学报,2005,33(B12):2301-2307. 被引量:3
  • 9Forrest S, Perelson A S, Allen L, etal. SelPnonself discrimi- nation in a computer[C]//Research inSecurity and Privacy, 1994. Proceedings, 1994 IEEE Computer Society Symposi- um on. Ieee,1994:202-212.

二级参考文献9

  • 1高稚允 高岳 等.军用光电系统[M].北京:北京理工大学出版社,1995..
  • 2[1]Chtister Wigren. A generic IRST detection performance model. SPIE Proceedings, 2000, 4030: 206-217
  • 3[2]John D McGlynn, Dino J Sofianos. Parametric Model-based characterization of IR clutter. SPIE Proceedings, 1995, 2470: 236-244
  • 4[3]Agostino J D, Webb C, 3-D analysis framework and measurement methodology for imaging system noise. SPIE Proceedings, 1991, 1488: 110-121
  • 5[4]Thomas J Meizler, Haprpreet Singh, Labib Arefeh, et al. Computing the probability of target detection in infrared and visual scenes using the fuzzy logic approach. SPIE Proceedings, 1997, 3063: 2-11
  • 6[5]HUANG Shi-Ke, LI Li-Juan, CHEN Bao-Guo, et al. Performance evaluation system of signal processing algorithm. SPIE Proceedings, 2001, 4553: 185-190
  • 7高稚允,军用光电系统,1995年
  • 8张鸣平,夜视系统,1993年
  • 9焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548. 被引量:224

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部