期刊文献+

非线性双圆盘转子-密封系统的数值分析(英文) 被引量:2

Numerical analysis of a nonlinear double disc rotor-seal system
原文传递
导出
摘要 研究目的:求解双圆盘转子-密封系统的非线性振动特性和运动响应创新要点:采用有限元法(FEM)和拉格朗日方程求解双圆盘转子-密封系统,进而为研究多级转子系统的非线性振动问题提供有效方法。研究方法:基于有限元法(FEM)和拉格朗日方程,得到包含Muszynska非线性密封流体力和圆盘重力作用下的双圆盘转子-密封系统的运动方程。同时利用四阶龙格-库塔法求解系统动特性运动响应情况,利用分岔图、时间历程图、轴心轨迹图、庞加莱映射和幅值谱等分析图研究双圆盘转子-密封系统的非线性振动特性。重要结论:随着转速的增大,双圆盘转子-密封系统呈现丰富的非线性运动形式,包括周期性运动、多周期运动、准周期运动以及混沌运动。在右端圆盘不平衡质量小于34 kg、密封间隙范围为0.376 mm–0.54 mm、密封长度大于0.13 m或者密封压差高于0.104 MPa的情况下均有利于提高双圆盘转子-密封系统的稳定性。 Based on the finite element method (FEM) and the Lagrange equation, a novel nonlinear model of a double disc rotor-seal system, including the coupled effects of the gravity force of the discs, Muszynska's nonlinear seal fluid dynamic force, and the mass eccentricity of the discs, is proposed. The fourth order Runge-Kutta method is applied to solve the motion equations of the system and numerically determine the vibration response of the center of the discs. The dynamic behavior of the system is analyzed using bifurcation diagrams, time-history diagrams, axis orbit diagrams, Poincar6 maps, and amplitude spectrums. With the rotor speed increasing, the system presents rich forms including periodic, multi-periodic, quasi-periodic, and chaotic motion. We also discuss the effects of the distance between the two discs, the mass of the discs, seal clearance, seal length, and seal drop pressure on the dynamic behavior of the system. The numerical results demonstrate that a symmetrical disc structure, small disc mass, proper seal clearance, long seal length and high seal drop pressure can enhance the stability of a double disc rotor-seal system. The results provide a theoretical foundation for the design of multi-stage sealing systems.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2014年第1期39-52,共14页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project supported by the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period(No.2011BAF03B01),China
关键词 非线性 转子-密封系统 有限元法 液体激励 Nonlinear, Rotor-seal system, Finite element method (FEM), Fluid excitation
  • 相关文献

参考文献1

二级参考文献20

  • 1Abduljabbar, Z., ElMadany, M.M., A1Abdulwahab, A.A., 1996. Active vibration control of a flexible rotor. Computers and Structures, 58(3):499-511. [doi:10.1016/0045-7949 (95)00164-C].
  • 2Adhikari, S., 1999. Modal analysis of linear non-conservative systems. Journal of asymmetric EngineeringMechanics, 125(12):1372-1379. [doi:10.1061/(ASCE) 0733-9399(1999)125:12(1372)].
  • 3Adhikari, S., 2000. On symmetrizable systems of second kind. ASME Journal of Applied Mechanics, 67(4):797-802. Idol: 10.1115/1.1322038].
  • 4Bathe, K.J., 1996. Finite Element Procedures. Prentice-Hall Inc., New Jersey, p.768-784.
  • 5Carrella, A., Friswell, M.I., Zotov, A., Ewins, D.J., Tichonov, A., 2009. Using nonlinear springs to reduce the whirling of a rotating shaft. Mechanical Systems and Signal Processing, 23(7):2228-2235. [doi:l 0.1016/j.ymssp.2009. 03.006].
  • 6Das, A.S., Nighil, M.C., Dutt, J.K., Irretier, H., 2008. Vibration control and stability analysis of rotor-shaft system with electromagnetic exciters. Mechanism and Machine The- ory, 43(10):1295-1316. [doi:10.lO16/j.mechmachtheory. 2007.10.0071.
  • 7Friswell, M.I., Dutt, J.K., Adhikari, S., Lees, A.W., 2010. Time domain analysis of a viscoelastic rotor using internal va- riable models. International Journal of Mechanical Sci- ences, 52(10):1319-1324. [doi:10,10161j.i]mecsei.2010. 06.007].
  • 8Garadin, M., Kill, N., 1983. A new approach to finite element modeling of flexible rotors. Engineering Computations, 1(1):52-64. [doi: 10.1108/eb023560].
  • 9Chiang, H.W.D., Hsu, C.N., Jeng, W., 2002. Turbomachinery Dual Rotor-Bearing System Analysis. ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, the Netherlands, p.803-810. [doi:l 0.1115/GI2002-30315].
  • 10Jei, Y.G., Lee, C.W., 1988. Finite element model of asymmet- rical rotor-bearing systems. Journal of Mechanical Sci- ence and Technology, 2(2):116-124. [doi:10.10071 BF02953671].

共引文献19

同被引文献20

  • 1张华彪,陈予恕.非线性转子的反向全周碰摩响应[J].振动与冲击,2013,32(10):84-90. 被引量:3
  • 2成玫,孟光,荆建平.非线性“转子-轴承-密封”系统动力分析[J].振动工程学报,2006,19(4):519-524. 被引量:8
  • 3成玫,孟光,荆建平.转子-轴承-密封系统的非线性振动特性[J].上海交通大学学报,2007,41(3):398-403. 被引量:11
  • 4Shi Ming-lin, Wang De-zhong, Zhang Ji-ge. Nonlinear dynamic analysis of a vertical rotor-bearing system [ J ]. Journal of Mechanical Science and Technology,2013,27( 1 ) : 9 -19.
  • 5Wu J J. Prediction of lateral vibration characteristics of a full- size rotor-bearing system by using those of its scale models [J ]. Finite Elements in Analysis and Design, 2007,43: 803 -816.
  • 6Zeng Yun, Zhang Li-xiang, Guo Ya-kun, et al. The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets [ J ]. Nonlinear Dynamics,2014,76(4) : 1921 - 1933.
  • 7Muszynska A. Improvements in lightly loaded rotor/bearing and rotor/seal models [ J ]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988,110 ( 2 ) : 129 - 136.
  • 8Muszynska A, Bently D E. Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/beating/seal systems and fluid handling machines E J ]- Journal of Sound and Vibration, 1990, 143 ( 1 ) : 103 - 124.
  • 9Li Wei, Yang Yi, Sheng De-ren, et al. A novel nonlinear model of rotor/bearing/seal system and numerical analysis [ J]. Mechanism and Machine Theory,2011,46:618 - 631.
  • 10李忠刚,孔达,焦映厚,陈照波,李明章.转子-密封系统非线性动力学特性分析[J].振动与冲击,2009,28(6):159-163. 被引量:8

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部