期刊文献+

非齐次非对称波动方程的Strichartz估计 被引量:1

Strichartz estimates for asymmetric nonhomogeneous wave equation
下载PDF
导出
摘要 通过研究齐次非对称波动方程的解,应用Duhamel’s原理,得到非齐次非对称波动方程柯西问题的形式解.与此同时,借助Hardy-Littlewood-Sobolev与lderoH??不等式,给出这类非齐次方程解的Strichartz估计. The solutions for inhomogeneous asymmetric wave equation are obtained, with the help of the solutions for the homogeneous asymmetric wave equation and Duhamel principle. Meanwhile, the Strichartz estimates on solutions to asymmetric nonhomogeneous wave equations are established by Hardy-Littlewood-Sobolev and Holder inequality.
作者 樊丹 杨晗
出处 《西南民族大学学报(自然科学版)》 CAS 2014年第1期87-90,共4页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 STRICHARTZ估计 非齐次非对称波动方程 Duhamel’s原理 Strichartz estimate asymmetric nonhomogenous wave equation Duhamel's principle
  • 相关文献

参考文献7

  • 1KEEL M,TAO T. Endpoint Strichartz inequalities[J].{H}AMERICAN JOURNAL OF MATHEMATICS,1998.955-980.
  • 2J INIBRE,G VELO. Generalized Strichartz inequalities for the Wave Equation[J].{H}Journal of Functional Analysis,1995.50-68.
  • 3J GINIBRE,G VELO. he global Cauchy problem for the critical nonlinear wave equation[J].{H}Journal of Functional Analysis,1992.96-130.
  • 4P BRENNER. On Lp-Lq estimates for the wave equation[J].{H}Mathematische Zeitschrift,1975.251-254.
  • 5YONGQING LIU,YI ZHOU. Lp-Lq estimates on the solutions to utt-ux1x1 =Aut[J].2008.
  • 6樊丹,杨晗.齐次非对称波动方程的Strichartz估计[J].西南民族大学学报(自然科学版),2010,36(6):939-943. 被引量:1
  • 7ZHICHUN ZHAI. Strichartz type estimates for fractional heat equations[J].{H}Journal of Mathematical Analysis and Applications,2009.642-658.

二级参考文献6

  • 1STRICHARTZ M.Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations[J].Duke Math J,1977,44:705-714.
  • 2YONG QING LIU,YI ZHOU.estimates on the solutions to[J].math AP,2008(9):1147-1151.
  • 3GLASSEY R T.On the asymptotic behavior of nonlinear wave equation[J].Trans Amer Math Soc,1973,182:187-200.
  • 4Yajima K.Existence of solution forrevolutioequations[J].Comm Math Phys,1987,110:415-426.
  • 5KEEL M,TAO T.End point Strichartz inequalities[J].Amer J Math,1998,120:955-980.
  • 6FOSCHI D.Inhomogeneous Strichartz estimates[J].Journal of Hyperbolic Differ Equ,2005(1):1-24.

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部