期刊文献+

基于循环检测的气动退化图像混合域去噪算法

Mixed Domain Denoising Algorithm of Turbulence Degraded Image Based on Cycle-detection
下载PDF
导出
摘要 气动退化图像中存在先验信息未知以及噪声成分复杂不易进行滤波处理的问题,为此,提出一种气动退化图像混合域去噪算法。设计针对高斯噪声、泊松噪声、固定值脉冲噪声和随机值脉冲噪声的混合检测方法,使用改进的滤波方法在空域去除固定值脉冲噪声和随机值脉冲噪声,进行非下采样轮廓波变换多层分解,在变换域使用阈值方法去除高斯噪声和泊松噪声。进行噪声循环检测,设定迭代停止条件控制算法循环从而实现算法自适应。仿真实验结果表明,该算法的噪声检测性能和滤波性能较好,图像细节信息得到正确恢复。同时,算法复杂度较低,实时性较好,可满足气动退化图像去噪处理的需要。 To solve the problem of difficulty in denoising owing to unknown transcendent message and complex noise components, a mixed domain denoising algorithm of turbulence degraded image is put forward. A mixed noise detection algorithm aiming at every noise components is designed. Improved denoising methods are used to wipe off settled-valued and random-valued impulse noise in spatial domain. Threshold disposals based on disassembly of Nonsubsampled Contourlet Transform(NSCT) are done to wipe off Gaussian noise in transibrm domain, and a cost function is designed to implement adaptive disaggrega-tire layers. Noise cycle-detection is done, and an iterative washed-up condition is set to achieve adaptive algorithm. Simulation experiments show that noise detection performance and denoising performance is better, and detail information of degraded image is resumed. Meanwhile, the complexity of the algorithm is low and the real-time is better. All above make sure this algorithm satisfy the need of denoising of aero-optics degraded image.
出处 《计算机工程》 CAS CSCD 2014年第1期254-257,271,共5页 Computer Engineering
基金 国家自然科学基金资助项目"超声速飞行器气动光学效应红外图像复原理论与方法研究"(61175120)
关键词 气动退化图像 混合域 混合检测 非下采样轮廓波变换 实时性 turbulence degraded image mixed domain mixed detection Nonsubsampled Contourlet Transform(NSCT) real-time
  • 相关文献

参考文献7

二级参考文献93

  • 1罗林,廖胜,樊敏,沈忙作.天文望远镜像差对斑点成像技术的影响[J].光学学报,2005,25(11):1447-1451. 被引量:8
  • 2夏庆观,陈桂,盛党红.基于小波变换的多源图像数据融合与边缘检测方法[J].微计算机信息,2005,21(10X):105-106. 被引量:17
  • 3李强,廖胜,魏宏刚,沈忙作.Restoration of solar and star images with phase diversity-based blind deconvolution[J].Chinese Optics Letters,2007,5(4):201-203. 被引量:1
  • 4Brownrigg D R K. The weighted median filter [ J]. Communications of the ACM, 1984,27(8): 807-818.
  • 5Yin L, Yang R, Gabbouj M, et al. Weighted median fitters: A tutorial [ J ]. IEEE Transactions on Circuits System: Analog Digital, Signal Process, 1996,43 ( 3 ) : 157-192.
  • 6Yin L, Astola J, Neuvo Y. Adaptive weighted median filtering under the mean absolute error criterion [ C]//Proceedings of the IEEE Workshop on Visual Signal Processing and Communications. 1991: 184-187.
  • 7Yin L, Neuvo Y. Fast adaptation and performance characteristics of FIR-WOS hybrid filter [J]. IEEE Transactions on Signal Process, 1994,42: 1610-1628.
  • 8Astola J, Haavisto P, Neuvo Y. Vector median filters [ J]. Proceedings of the IEEE, 1990,78(4): 678-689.
  • 9Trahanias P E, Karakos D, Venetsanopoulos A N. Directional processing of color images: Theory and experimental results [ J ]. IEEE Transactions on Image Processing, 1996,5 (6): 868-880.
  • 10Karakos D G, Trahanias P E. Generalized multichannel image filtering structure [ J]. IEEE Transactions on Image Processing, 1997,6(7): 1038-1045.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部