期刊文献+

基于APSO优化算法的GCHP系统神经网络预测控制 被引量:5

RBFNN Predictive Control for GCHP System with APSO Algorithm
下载PDF
导出
摘要 针对地源热泵(GCHP)系统的能量消耗问题,提出了一种基于自适应粒子群(APSO)优化算法和最邻近聚类径向基神经网络(RBFNN)建模的预测控制策略;首先,利用神经网络建立系统的输出预测模型,然后通过粒子群的滚动优化算法求解得到最优控制量;仿真结果表明,该方法能够在满足负荷要求的前提下,有效地降低GCHP系统在运行过程中的能量消耗。 For reducing the energy consumption of the ground--coupled heat pump (GCHP) systern, a predictive control strategy is proposed based on adaptive particle swarm optimization (APSO) algorithm and nearest neighbor clustering radial basis function neural network (RBFNN). First, utilize RBFNN to establish the model of the system, then calculated the optimal settings with the rolling optimization algorithm of APSO. The simulation results show that this control strategy can reduce the total energy consumption of the GCHP system efficiently under the requirements of the load.
出处 《计算机测量与控制》 北大核心 2014年第1期106-108,112,共4页 Computer Measurement &Control
关键词 地源热泵系统 径向基神经网络 自适应粒子群算法 预测控制 ground--coupled heat pump system radial basis function neural network adaptive particle swarm optimization algorithm predictive control
  • 相关文献

参考文献10

二级参考文献39

  • 1张智焕,王树青,荣冈.基于反馈线性化的预测函数控制及其在CSTR中的应用[J].控制理论与应用,2001,18(z1):158-160. 被引量:7
  • 2魏东,张明廉,支谨.神经网络非线性预测优化控制及仿真研究[J].系统仿真学报,2005,17(3):697-700. 被引量:18
  • 3侯志祥,申群太,吴义虎,周育才.基于Elman神经网络的汽油机过渡工况空燃比多步预测模型[J].中南大学学报(自然科学版),2006,37(5):981-985. 被引量:6
  • 4Sorensen P H, Norgaard M. Implementation of neural network based nonlinear predictive control[J]. Neurocomputing, 1999, 28(1): 37-51.
  • 5Shin S C, Park S B. Ga-based predictive control for nonlinear processed[J]. Electronics Letter, 1998, 34(20): 1980-1981.
  • 6XIAO Jian-mei. Research on neural network predictive control based particle swarm optimization[C]//Proceeding of the 5th World Congress on Intelligence Control and Automation. Hangzhou, 2004: 603-606.
  • 7Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization[C]//Proceedings on Evolutionary Computation. Seoul, Korea, 2001: 152-168.
  • 8Shi Y, Eberhart R. A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence. Washington, 1998:207-219.
  • 9LI Ling-lai. An effective hybrid PSOSA strategy for optimization and its application to parameter estimation[J]. Applied Mathematics and Compution, 2006, 179(1):135-146.
  • 10Fan S S. A hybrid simplex search and particle swarm optimization[J]. European Journal of Operational Research, 2007, 181(2): 527-548.

共引文献65

同被引文献76

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部