期刊文献+

基于计算机图像处理技术的黄瓜病害特征提取 被引量:5

Feature Extraction of Cucumber Diseases Based on Computer Image Processing Technology
下载PDF
导出
摘要 精准识别作物病害的前提是精确提取其特征。为此,利用计算机图像处理技术,研究了黄瓜霜霉病的特征提取过程。使用高精度的光学设备直接进行数字图像采集,再运用图像预处理方法对图像数据进行优化,去除干扰,精确定位病斑部位;分析黄瓜霜霉病的表现形式,从统计量、颜色和形状3个方面分离出特征参数值15个。这些特征值将作为识别该病害的主要依据,大大提高了病害的识别精度。 The precise of identification of crop diseases is to extract its characteristics accurately. The study used com- puter image-processing techniques, study on the characteristic extraction process of cucumber downy mildew. Directly using a high precision optical equipment for digital image acquisition, then use image preproeessing method for optimizing image data, removing interference, pinpoint lesion site. Analyzed the manifestations of cucumber downy mildew, 15 parameter values were got from statistics, color and shape. These values will serve as the main basis for identifying the disease, greatly improving the disease recognition accuracy.
出处 《农机化研究》 北大核心 2014年第2期179-182,187,共5页 Journal of Agricultural Mechanization Research
基金 吉林省世行贷款农产品质量安全项目(2011-Z20) 吉林农业大学青年启动基金项目(201126)
关键词 黄瓜病害 数字图像处理 特征提取 作物病害识别 cucumber diseases digital Image processing feature extraction plant disease recognition
  • 相关文献

参考文献8

二级参考文献86

共引文献151

同被引文献63

  • 1侯明生,黄俊斌.农业植物病理学[M].北京:科学出版社,2007.
  • 2王海光,马占鸿,王韬,蔡成静,安虎,张录达.高光谱在小麦条锈病严重度分级识别中的应用[J].光谱学与光谱分析,2007,27(9):1811-1814. 被引量:24
  • 3岑喆鑫,李宝聚,石延霞,黄海洋,刘君,廖宁放,冯洁.基于彩色图像颜色统计特征的黄瓜炭疽病和褐斑病的识别研究[J].园艺学报,2007,34(6):1425-1430. 被引量:39
  • 4Li Jinghui,Gao Lingwang, Shen Zuorui. The preliminary application of fractal features to the recognition of three kinds of wheat diseases[ C ] //2011 2nd International Conference on Management Science and Engineering. Advances in Artificial Intelligence, 2011,6:196 -201.
  • 5Zhang J,Pu R,Huang W, et al. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses[ J]. Field Crops Research, 2012,134 : 165 - 174.
  • 6Yuan L,Huang Y,Loraamm R W, et al. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects[ J]. Field Crops Research, 2014,156 : 199 - 207.
  • 7Dalai N,Triggs B. Histograms of oriented gradients for human detection [ C ]// Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition, 2005,1 : 886 - 893.
  • 8Levi K,Weiss Y. Learning object detection from a small number of examples : the importance of good features[ C ]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004,2 : 11-53 - 11-60.
  • 9Guo Qing,Dong Fangmin,Sun Shuifa, et al. Improved rotating kernel transformation based eontourlet domain image denoising framework [ C]//Advances in Multimedia Information Processing-PCM 2013, Lecture Nates in Computer Science .2013.8294_. 146 -157.
  • 10Kulkarni A H,Patil A R K. Applying image processing technique to detect plant diseases [ J]. International Journal of Modern Engineering Research (IJMER) , 2012,2 ( 5 ) : 3661 - 3664.

引证文献5

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部