期刊文献+

基于分割缩放的欠采样相位图解包裹算法 被引量:2

Unwrapping algorithm based on segmentation and zooming for undersampled wrapped phase
下载PDF
导出
摘要 为了提取所需的相位信息,克服噪声、断点以及欠采样等不利因素的影响,针对采样问题出现的根本原因(采样频率过低、图像条纹密度过高),在处理欠采样问题时采用基于分割缩放原理的相位解包裹算法,对密度过高的干涉条纹通过插值放大后再进行解包裹运算。在理论分析的基础上给出了具体的相位解包裹算法,模拟计算和实验验证都表明了该算法的可行性。结果表明,该算法对有欠采样相位的解包裹能取得不错的效果。 In order to obtain phase information, many unfavorable factors such as noise, breakpoint and under sampling must be overcome. Aimed at too low sampling frequency and high fringe density, the root cause of the undersampling problem, unwrapping algorithm based on segmentation and zooming principle was introduced. After enlarging interference fringe whose density is too high by interpolation method, the phase was unwrapped. The simulation and experimental results show the feasibility of the proposed algorithm. It turns out that it is an effective unwrapping algorithm for undersampled wrapped phase.
出处 《激光技术》 CAS CSCD 北大核心 2014年第1期39-43,共5页 Laser Technology
基金 国家自然科学基金资助项目(61067004)
关键词 全息 相位解包裹 分割缩放 欠采样 holography phase unwrapping segmentation and zooming undersampling
  • 相关文献

参考文献5

二级参考文献43

  • 1钱晓凡,张磊,董可平.基于相移技术的显微数字全息重构细胞相位[J].光子学报,2006,35(10):1565-1568. 被引量:7
  • 2M .Takeda and K. Mutoh, Appl. Opt. 22, 3981(1983).
  • 3Wang Ying and Su Xian-yu, Journal of Optoelectronics.Laser 19, 1561 (2008). (in Chinese).
  • 4Lin Jian-feng and Su Xian-yu, Opt. Engng. 34, 3300 (1995).
  • 5Cho Jui Tay, Madhuri Thakur and Chenggen Quan, Appl. Opt. 44, 1393 (2005).
  • 6CHEN Wen-jing, CHEN Feng and SU Xian-yu, Journal of Optoelectronics · Laser 16, 1076 (2005). (in Chinese).
  • 7CHEN Wen-jing, SU Xian-yu and Tan Song-xin, Acta Optica Sinica 20, 1432 (2000). (in Chinese).
  • 8Bing Pan, Qian Ke-mao and Lei Huang, Optics Letters 34, 416 (2009).
  • 9D. Kerr, G. H. Kaufmann and G. E. Galizzi, Appl. Opt. 35, 810 (1996).
  • 10GOODMAN J W,LAWRENCE R W.Digital image formation from electronically detected holograms[J].Applied Physics Letter,1967,11 (3):77-99.

共引文献57

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部