期刊文献+

基于稀疏表示和自相似学习的图像超分辨率重构 被引量:1

Image super-resolution based on sparse representation and self-similarity learning
下载PDF
导出
摘要 基于稀疏表示的超分辨率重构算法效果依赖于样本图像信息,难以保证重构质量;基于图像结构自相似的算法利用了图像自身的附加信息,但是这些信息不足以获得很好的重构效果.本文综合利用样本图像信息和待处理低分辨率图像自身信息,提出了一种新的方法.在基于稀疏表示的框架下把与待重建图像相似的高分辨率样本图像信息提取出来用于重构,利用低分辨率图像自身的附加信息对上一步的重构图像进行修复,进一步提高重构质量.数值实验结果表明,本算法对图像的细节部分具有更好的重构效果. The reconstructed image quality of Super-resolution based on sparse representation depends on the information of high-resolution image database, the result can not be guaranteed. Super-resolution based on image structural similarity only uses' the additional information contained in the given low-reso- lution image itself, but the information is not enough to get an ideal reconstructed image. In order to use both training database and the given low-resolution image, a new method is put forward in this paper: First, use the sparse representation based algorithm to reconstruct the image; and then, use the addition- al information contained in the low resolution image hance the quality in advance. The simulation result two algorithm mentioned above. to repair the achieved image in the first step, en- indicates that the method perform better than the
作者 李强 林文晓
出处 《纺织高校基础科学学报》 CAS 2013年第4期548-552,共5页 Basic Sciences Journal of Textile Universities
关键词 超分辨率重构 稀疏表示 附加信息 自相似学习 super-resolution sparse representation additional information self-similarity learning
  • 相关文献

参考文献12

  • 1FREEMAN W T,JONES W T,PASZTOR T R. Example-based super-resolution[J].{H}IEEE Computer Graphics and Applications,2002,(01):56-65.
  • 2YANG J,WRIGHT J,HUANG T S. Image super-resolution as sparse representation of raw image patches[A].Anchorage,AK,2008.1-8.
  • 3YANG J,WRIGHT J,HUANG T S. Image super-resolution via sparse representation[J].{H}IEEE Transactions on Image Processing,2010,(11):2861-2873.
  • 4YANG J,WANG Z,LIN Z. Couple dictionary training for image super-resolution[J].{H}IEEE Transactions on Image Processing,2012,(99):3467-3478.
  • 5DONOHO D L. Compressed sensing[J].{H}IEEE Transactions on Information Theory,2006,(03):1289-1306.doi:10.1109/TIT.2006.871582.
  • 6SUETAKE N,SAKANO M,UCHINO E. Image super-resolution based on local self-similarity[J].{H}OPTICAL REVIEW,2008,(01):26-30.
  • 7CHEN S,GONG H,LI C. Super resolution from a single image based on self similarity[A].Chengdu,2011.91-94.
  • 8ARYA S,MOUNT D M. Approximate nearest neighbor queries in fixed dimensions[A].1993.
  • 9PAN Z,YU J,HUANG H. Super-resolution based on compressive sensing and structural self-similarity for re-mote sensing images[J].{H}IEEE Transactions on Geoscience and Remote Sensing,2013.1-13.
  • 10GLASNER D. Super-resolution from a single image[A].{H}Kyoto,Japan,2009.349-356.

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部