期刊文献+

面向混沌时间序列预测的隐式特征提取算法 被引量:12

Novel hidden feature extraction method for chaotic time series prediction
下载PDF
导出
摘要 混沌时间序列预测研究的2个焦点:一个是增加预测模型的复杂度,以面向控制、水文、气象,脑电生理学等研究背景下的具体预测需求;另一个是引入和改进模式识别领域里的特征提取算法,从而降低混沌数据的预测难度,以提高预测精度。采用经验模态分解和独立成分分析算法,改进线性和非线性特征的提取。并在解析意义下,给出了一种新颖的隐式特征表达。在不改进预测模型的前提下,提出了一种混沌序列隐式特征提取算法。采用经典的Mackey-Glass仿真、比利时皇家天文台太阳黑子数,以及密西西比河实测流量数据实验表明,该方法提高了模型预测精度。 Chaotic time series prediction is an active research area and has received considerable attention. Previous research has focused on two aspects, one is improving the forecasting model complexity to meet the requirements of the applications in variety of areas, such as control, hydrology, meteorology and cerebral electrophysiology, the other is introducing and improving the feature extraction algorithm in pattern recognition field. The aim of this work is to de- crease the prediction difficulty of chaotic data and improve the prediction accuracy. This paper adopts empirical mode decomposition and independent component analysis algorithms to improve the extraction of linear and non-linear fea- tures;and a novel hidden feature expression is given in the sense of analysis. A feature extraction method in hidden mode for chaotic time series prediction is proposed without improving the prediction model. The results of classical Mackey-Glass time series simulation and the experiments on sunspot data from Royal Observatory of Belgium and Mississippi river flow time series show that the forecasting results of the proposed hidden feature extraction method are superior to those of Elman neural network, least squares support vector machine and the Elman neural network com- bined with empirical mode decomposition.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第1期1-7,共7页 Chinese Journal of Scientific Instrument
基金 教育部新世纪优秀人才计划(NCET10-0062)资助项目
关键词 混沌时间序列 隐式特征提取 经验模态分解 独立成分分析 chaotic time series hidden feature extraction empirical mode decomposition independent component analysis
  • 相关文献

参考文献16

  • 1HAN M,XI .l H ,XU S G,et al. Prediction of chaotic time se- ries based on the recurrent predictor neural network [ J ]. IEEE Transactions on Signal Processing,2004,52(12) :3409- 3416.
  • 2ROHITASH C, ZHANG M J. Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction [ J ]. Neurocomputing, 2012,86 : 116 -! 23.
  • 3史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 4SHI ZH W, HAN M. Support vector echo state machine for chaotic time series prediction [ J ]. IEEE Transactions on Neural Networks,2007,18 (2) : 359-372.
  • 5SANG-II C ,JIYONG O,CHONG-HO C ,et al. Input varia-ble selection for feature extraction in classification prob- lems[J]. Signal Processing,2012,92(3) :636-648.
  • 6MUHAMMAD A F, SAEED Z. Chaotic time series predic- tion with residual analysis method using hybrid Elman NARX neural networks [ J ]. Neurocomputing, 2010,73 : 2540-2553.
  • 7PENG Yu LEI Miao GUO Jia PENG Xiyuan.Multiresolution Analysis and Forecasting of Mobile Communication Traffic[J].Chinese Journal of Electronics,2013,22(2):373-376. 被引量:3
  • 8吴江伟,王雪,孙欣尧.采用二次经验模态筛选的谐波辨识方法[J].仪器仪表学报,2012,33(11):2401-2406. 被引量:5
  • 9ROJAS I, VALENZUELA O, ROJAS F, et al. Soft compu- ting techniques and ARMA model for time series predic- tion[ J]. Neurocomputing,2008,71:519-537.
  • 10MEHDI K, MEHDI B. A novel hybridization of artificial neural network and ARIMA models for time series fore- casting [ J ]. Applied soft computing, 2011, I1: 2664 -2675.

二级参考文献51

共引文献116

同被引文献145

引证文献12

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部