期刊文献+

基于新型可逆门的可扩展可逆比较器

Extensible reversible comparator based on novel reversible gate
下载PDF
导出
摘要 针对当前可逆比较器设计方案缺乏可扩展性的问题,提出了基于新型可逆门的具有可扩展性的可逆比较器可逆逻辑电路设计方案.该方案根据二进制数比较的特点采用递归思想将电路分解为2种新型可逆门,对分解出的每一个可逆门进行可逆逻辑综合,再将这2种可逆门级联成可逆比较器.给出了设计方案中每一步的逻辑演算,利用编码的思想进行带无关项的可逆逻辑综合,最终给出了具体的可逆比较器的综合方案.同时,以可逆比较器作为元器件给出了败者树排序电路,将排序的时间复杂度降低到Θ(n). The design proposal for an extensible reversible comparator based on a novel reversible gate is presented to solve the problem that the previous scheme is not extensible. Using the method of recursion, the circuit is decomposed to two kinds of novel reversible gates according to the features of the binary number comparison. And each reversible gate is synthesized with reversible logic. The re- versible comparator is realized by cascading these reversible gates. The logical expression of every step is given; the theory of encoding is used to solve logic synthesis with "do not care" set; the detailed scheme for synthesizing reversible comparator is provided. Tournament sort circuit based on reversible comparator is presented, and the asymptotic time complexity of the circuit is decreased to ~9(n).
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期39-44,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61170321) 高等学校博士学科点专项科研基金资助项目(20110092110024)
关键词 可逆比较器 新型可逆门 递归 reversible comparator novel reversible gate recursion
  • 相关文献

参考文献17

  • 1Landauer R. Irreversibility and heatgeneration in the computing process[J].{H}IBM Journal of Research and Development,1961,(3):183191.
  • 2Barenco A,Bennett C H,Cleve R. Elementary gates for quantum computation[J].{H}Physical Review A,1995,(5):34573467.
  • 3Song X Y,Yang G W,Perkowski M. Algebraic characterization of reversible gates[J].Theory ofCom-puting System,2006,(2):311319.
  • 4Peres A. Reversible logic and quantum computers[J].{H}Physical Review A,1985,(6):32663276.
  • 5Khan M M H A. Design of full-adder with reversible gates[A].Dhaka,Bangladesh,2002.515519.
  • 6Thapliyal H,Srinivas M B. Novel reversible TSG gate and its application for designing reversible carry look ahead adder and other adder architectures[A].Singapore,2005.775786.
  • 7Haghparast M,Navi K. A novel reversible BCD adder for nanotechnology based systems[J].American Jour-nal ofApplied Sciences,2008,(3):282288.
  • 8Haghparast M,Jassbi S J,Navi K. Design of a novel reversible multilplier circuit using HNG gate in nanotechnology[J].World Applied Sciences Journal,2008,(6):974978.
  • 9Islam M S,Rahman M M,Begum Z. Low cost quantum realization of reversible multiplier circuit[J].Information Technology Journal,2009,(2):208213.
  • 10Banerjee A,Pathak A. An analysis of reversible multi-plier circuits[EB/OL].http://arxiv.org/abs/0907.3357,2012.

二级参考文献20

  • 1肖芳英 陈汉武 陈开中 等.可逆电路错误检测方法的研究.通信学报,2007,28(8):96-104.
  • 2Bennett C.Logical reversibility of computation[J].IBM J Res Dev,1973,17(6):525-532.
  • 3Maslov D,Dueck G W,Miller D M.Toffoli network synthesis with templates[J].IEEE Trans CADICS,2005,24(6):807-817.
  • 4Miller D M,Maslov D,Dueck G W.A transformation based algorithm for reversible logic synthesis[C]//Proceedings of Design Automation Conference.Anaheim,CA,USA,2003:318-323.
  • 5Paterson K G.Generalized Reed-Muller codes and power control in OFDM modulation[J].IEEE Transactions on Information Theory,2000,46(11):104-120.
  • 6Sasao T.Easily testable realizations for generalized Reed-Muller expressions[J].IEEE Transactions on Computers,1997,46(6):709-716.
  • 7Tsai C C,Marek-Sadowska M.Generalized Reed-Muller forms as a tool to detect symmetries[J],IEEE Transactions on Computers,1996,45(11):33-40.
  • 8Paterson K G,Jones A E.Efficient decoding algorithms for generalized Reed-Muller codes[J].IEEE Transactions on Communications,2000,48(88):1272-1285.
  • 9Yang G,Song X,Perkowski M A,et al.Four-level realization of 3-qubit reversible function[J].IET Comput Digit Tech,2007,1(4):382-388.
  • 10Savage J E.Models of computation[M].Boston,MA,USA:Addison-Wesley Longman Publishing Co.,Inc.,2007.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部