期刊文献+

字典原子优化的图像稀疏表示及其应用 被引量:3

Optimization of dictionary atoms in image sparse representations and its application
下载PDF
导出
摘要 为了提高图像稀疏表示性能,提出了一种有效的结构化字典图像稀疏表示方法.针对过完备字典构造和稀疏分解中原子筛选问题,提出了一种基于灰色关联度的字典原子筛选和结构聚类方案.首先,对测试图像分块处理,利用块作为原子样本;然后,计算原子间的灰色关联度,并设置原子灰色关联度的筛选准则;最后,利用结构特征对原子聚类,构造图像稀疏字典.算法利用灰色关联度选择表征能力强的原子,提高字典的表征能力,缓解了传统字典设计对原子个数的依赖;同时,降低了算法的复杂度.将该方法得到的字典用于图像去噪,结果表明,视觉效果明显优于同类算法,峰值信噪比提高2 dB左右,且算法复杂度显著降低. In order to improve the performance of image sparse representation, an effective represen- tation method based on a structured image sparse dictionary is proposed. For the atomic selecting problem in constructing an over-complete dictionary and sparse decomposition, a kind of images dic- tionary atom selecting and structure clustering method based on the grey relation is proposed. First, atoms are selected by the blocking test image. Then the grey relation between atoms is calculated, and the rule of atom selection is set up. Finally, atoms are clustered by characteristics of structures, and a sparse representation dictionary is constructed. In this method, atoms with high representative performance are selected by the grey relation, improving the ability of capturing the image structure. The method solves the problem of a traditional dictionary designed depending on the number of se- lected atoms and also reduces the complexity. The simulation results show that the proposed method is superior to other algorithms in objective quality. The peak signal to noise ratio value increases about 2 dB. And the complexity of the algorithm is decreases greatly.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期116-122,共7页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61171077) 江苏省高校自然科学研究资助项目(12KJB510025 12KJB510026) 南通市引进人才资助项目(03080415) 南通大学创新人才基金资助项目(2009)
关键词 图像稀疏表示 原子优化 灰色关联度 原子聚类 image sparse representation atomic optimization grey relation atomic cluster
  • 相关文献

参考文献12

  • 1Smith L N, Elad M. Improve dictionary learning: multiple dictionary updates and coefficient reuse [J]. IEEE Signal Processing Letter, 2013, 20(1) : 79-82.
  • 2练秋生,张伟.基于图像块分类稀疏表示的超分辨率重构算法[J].电子学报,2012,40(5):920-925. 被引量:52
  • 3Aharon M, Elad M, Bruekstein A. K-SVD: an algo- rithm for designing overcomplete dictionaries for sparse representation [ J ]. IEEE Transaction on Signal Processing, 2006, 54( 11 ) : 4311 -4322.
  • 4郭景峰,李贤.基于群稀疏的结构化字典学习[J].中国图象图形学报,2012,17(11):1347-1352. 被引量:6
  • 5Chatterjee P, Milanfar P. Clustering-based denoising with locally learned dictionaries E J ]. IEEE Transactions on Image Processing, 2009, 18(7) : 1438 - 1451.
  • 6Mairal J, Sapiro G, Elad M. Learning multiscale sparse representations for image and video restoration [J]. SIAM Multiscale Modeling and Simulation, 2008, 7 ( 1 ) : 214 -241.
  • 7Kevin R, Lihi Z M, Yonina C E. Dictionary optimiza- tion for block-sparse representationsl J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2386-2395.
  • 8武森,冯小东,单志广.基于不完备数据聚类的缺失数据填补方法[J].计算机学报,2012,35(8):1726-1738. 被引量:63
  • 9Dang J L. Control problems of grey system[J]. System and Control Letters, 1982, 1(5) : 288 -294.
  • 10马苗,田红鹏,张艳宁.灰色理论在图像工程中的应用研究进展[J].中国图象图形学报,2007,12(11):1943-1951. 被引量:32

二级参考文献104

共引文献149

同被引文献10

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部