期刊文献+

数据中心特征失真下的深度挖掘算法研究 被引量:1

Deep Mining Algorithms Based on Data Center Features Distortion
下载PDF
导出
摘要 在数据的关联规则挖掘研究中,产生候选频繁项,存在的重复计算和冗余候选项,会造成数据关联特征发生失真,导致计算支持数时重复扫描事务数据库的次数增加。为此,提出一种抗特征失真的深度挖掘算法,首先进行数据处理,计算每个项目在事务数据库中的支持数,然后与最小支持度相比,利用POS最优解的思想计算最优特征,引入淘汰因子,实现数据深度挖掘,有效地提高了算法的效率。实验数据表明,该算法的挖掘效率比现有的同类算法更快速有效。 This paper puts forward a resistance characteristics of the depth of the distortion of the mining algorithm, first carries on the data processing, calculate each project in the affairs of the number of database support, and then compared with the value of minimum support, using POS for the optimal solution of the optimal feature calculation thought, the introduction of selection factor, realize the data mining depth, effectively improve the efficiency of the algorithm. Through the experimental data show that the change of the mining algorithm efficiency ratio of the exiating similar algorithm more quickly and efficiently.
作者 唐洪涛
出处 《科技通报》 北大核心 2013年第12期45-47,共3页 Bulletin of Science and Technology
基金 内江职业技术学院在线答疑系统
关键词 数据挖掘 特征失真 关联规则 最优解 data mining characteristic distortion association rules the optimal solution
  • 相关文献

参考文献5

二级参考文献50

  • 1陈耿,朱玉全,杨鹤标,陆介平,宋余庆,孙志挥.关联规则挖掘中若干关键技术的研究[J].计算机研究与发展,2005,42(10):1785-1789. 被引量:62
  • 2丁艳辉,王洪国,高明,谷建军.一种基于矩阵的关联规则挖掘新算法[J].计算机科学,2006,33(4):188-189. 被引量:13
  • 3吉根林,韦素云.分布式环境下约束性关联规则的快速挖掘[J].小型微型计算机系统,2007,28(5):882-885. 被引量:7
  • 4Rakesh A, Ramakrishnan S. Fast Algorithms for Mining Association Rules in Large Databases[C]//Proc. of the 12th Int'l Conf. on Very Large Databases. Santiago, Chile: [s. n.], 1994.
  • 5Agrawa R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C].//Proc, of ACM SIGMOD International Conference on Management of Date. Washington DC,1993 : 207-216.
  • 6Park J S, Ming-Syan C, Philip S Y. An Effective Hash Based Algorithm for Mining Association Rules[C].// Proc of ACMSIGMOD. 1995 : 175-185.
  • 7Brin S, Motwai R, Ullman J D, et al. Dynamic Itemset Counting and Implication Rules for Market BasketData [C].//Proc. of ACM SIGMOD Conference on Management of Data. 1997:265-276.
  • 8Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Databaes[C].//Proc. of 1994 International Conference on Very Large Databases. 1994:487-499.
  • 9Savasere S, Omiecinski E, Navathe S. An Efficient Algorithm for Mining Association Rules in Large Databases[C].//Proc. of 21^St VLDB. 1995 : 432-444.
  • 10Dunkel B, Soparkar N. Data Organization and Access for Efficient Data Mining[C].//Proc. of 15th IEEE Intl. Conf. on Data Engineering. 1999 : 522-529.

共引文献131

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部