期刊文献+

未知探测概率下多目标PHD跟踪算法 被引量:6

Multi-target probability hypothesis density filtering with unknown probability of detection
原文传递
导出
摘要 针对未知探测概率下多目标跟踪问题,提出一种基于时变滤波算法的多目标概率假设密度(PHD)滤波器.算法推导了未知探测概率PHD递推式,提出了将未知探测概率转化为目标的丢失与接收事件,并依此建立了目标跟踪的马尔科夫模型,给出了该模型下时变卡尔曼滤波最优解,进而在高斯混和PHD(GMPHD)框架下推导了算法闭集解.仿真实验表明,所提出算法在未知且随时间变化的探测概率情形下,仍能实时地跟踪各目标,具有良好的工程应用前景. According to the general problem of unknown detection probability in the probability hypothesis density(PHD) filter, a PHD algorithm based on the time-varying Kalman filter(TVKF) is proposed. Firstly, PHD recursions without the knowledge of the detection probability are derived. Secondly, the measurements of loss events are modeled as Markov processes, and the optimal estimator with missing sensor data samples is given by using time-varying Kalman filter. Furthermore, the closed form solutions are calculated under the framework of the Gaussian sum based probability hypothesis(GMPHD) filter. The simulation results show that the improved algorithm has better performance in terms of state estimation under the unknown detection probability, and has good application prospects.
出处 《控制与决策》 EI CSCD 北大核心 2014年第1期57-63,共7页 Control and Decision
基金 国家863计划项目(2010AA7010422 2011AA7014061) 国家自然科学基金项目(60901069) 中国博士后科学基金项目(200902671)
关键词 多目标跟踪 概率假设密度滤波 马尔科夫模型 时变卡尔曼滤波 multi-target tracking probability hypothesis density filter Markov processes time-varying Kalman filter
  • 相关文献

参考文献4

二级参考文献51

  • 1潘泉,叶西宁,张洪才.广义概率数据关联算法[J].电子学报,2005,33(3):467-472. 被引量:29
  • 2彭冬亮,文成林,徐晓滨,薛安克.随机集理论及其在信息融合中的应用[J].电子与信息学报,2006,28(11):2199-2204. 被引量:24
  • 3曲长文,黄勇,苏峰.基于动态规划的多目标检测前跟踪算法[J].电子学报,2006,34(12):2138-2141. 被引量:27
  • 4SHIN J, GUIBAS L, ZHAO F. A distributed algorithm for managing multi-target identities in wireless ad-hoc sensor networks [ C ]// Proceeding of 2nd Workshop on Information Processing in Sensor Networks, Palo Alto, CA ,2003.
  • 5GOODMAN I R, MAHLER R,NGUYEN H. Mathematics of data fusion[ M]. Boston: Kluwer Academic Publishing Co., 1997.
  • 6MAHLER R. Multi-target Bayes filtering via first-order multitarget moments [ J ]. IEEE Transactions on Aerospace and Electronic Systems ,2003,39 : 1152-1178.
  • 7GEYER C. Likelihood inference for spatial point processes [G]// Barndorff-Nielsen. Stochastic Geometry Likelihood and Computation. 1999:79 - 140.
  • 8COX C R. Point processes [ M ]. Cambridge: Great Britain at the University Press, Cambridge, 1980.
  • 9VO B N, SINGH S, DOUCET A. Sequential Monte Carlo methods for multi-target filtering with random finite sets [J ]. IEEE Transactions on Aerospace and Electronic Systems ,2005,41 (4) : 1224 - 1245.
  • 10SASTRY C R,KAMEN E W. SME filter approach to multitarget tracking with radar measurements [ C ]//IEEE Proceeding-F Radar and Signal Processing, 1993:251 - 260.

共引文献31

同被引文献39

  • 1周代英.雷达目标一维距离像识别中的最优子空间法[J].电波科学学报,2004,19(6):748-751. 被引量:4
  • 2Bar-Shalom Y, Li Xiaorong. Multitarget-multisensor tracking: principles and techniques [M]. Storrs: YBS Publishing, 1995.
  • 3Chang K C, Bar-Shalom Y. Joint probabilistic data as- sociation for multitarget tracking with possibly unre- solved measurements and maneuvers[J]. IEEE Trans-actions on Automatic Control, 1984, 29(7) : 585-594.
  • 4Singer R A, Stein J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[C]//Proceedings of the 10th IEEE Conference on Decision and Control. Miami Beach: IEEE, 1971 : 171-175.
  • 5Fortmann T E, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic da- ta association[J]. IEEE Journal of Oceanic Engineer- ing, 1983,8(3) ; 173-184.
  • 6Blackman S S. Multiple hypothesis tracking for multi- ple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004,19 ( 1 ) ; 5-18.
  • 7Yin Jianiun, Zhang Jianqiu, Zhuang Zesen. Gaussian- sum PHD filtering algorithms for nonlinear non- Gaussian models[J] Chinese Journal of Aeronautics, 2008, 21(4): 341-351.
  • 8Mahler R P S. Multitarget Bayes filtering via first-or- der multitarget moments[J] IEEE Transactions on Aerospace and Electronic Systems, 2003,39 (4) : 1152- 1178.
  • 9Clark D, Vo B T, Vo B N. Gaussian particle imple- mentations of probability hypothesis density filters-C //Proceedings of 2007 IEEE Conference on Aerospace. Big Sky: IEEE, 2007 : 1-11.
  • 10Mahler R P S. Statistical multisource-multitarget in- formation fusion . Norwood: Artech House,2007.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部