摘要
对空间变量四阶紧致格式进行离散,时间变量保持不变,把一维对流扩散方程转化为常微分方程组的初值问题,再利用梯形方法构造对流扩散方程的时间二阶空间四阶精度的一种差分格式,并稳定性进行分析,数值结果与Crank-Nicholson格式进行比较,数值结果表明。
The compact finite difference approximation of fourth order was applied to discredit spatial de -rivatives but leave the time variable Continuous .This approach results in a system of ODEs , which can be used trapezoidal formula derived fourth order in space and second order in time unconditionally stable implicit scheme . The stability and local truncation error of the obtained method were analyzed Numerical experiments and com -pared with Crank -Nicolson scheme .Numerical experiments show that present method both stable and accurate approximations in exact solution , which is useful and efficient method for solving linear one dimensional convec-tion-diffusion equation .
出处
《佳木斯大学学报(自然科学版)》
CAS
2014年第1期135-138,共4页
Journal of Jiamusi University:Natural Science Edition
基金
新疆大学本科生创新项目(XJU-SRT-13017)