期刊文献+

激光触发开关触发延时及抖动特性 被引量:8

Triggering Delay and Jitter of Laser Triggered Gas Switch
原文传递
导出
摘要 为了研究激光触发开关工作特性,实验中利用高压电容放电开关试验平台,对氮气气体开关在波长为1 064、532、266 nm脉冲激光触发作用下,不同欠压比、不同能量、不同焦距等情况下开关的延时和抖动特性进行了研究。实验结果表明:开关的延时、抖动随激光能量的增加、欠压比的增大而减小;激光聚焦情况下,激光能量触发阈值明显小于未聚焦情况;较长的激光焦距下,开关具有较小的延时和抖动;激光波长为266 nm时,开关触发工作特性要好于532 nm和1 064 nm激光;较小的激光通孔具有较好的开关工作特性;激光作用电极的材料为不锈钢时,开关的工作特性要好于黄铜电极。 In order to investigate the working characteristics of laser triggered switch, adopting an experimental platform of high-voltage capacitance discharge, we studied the delay and jitter characteristics of N2 gas switch at a laser pulse of 1 064 rim, 532 rim, and 266 nm under the conditions of different percentages of self-breakdown voltage, different energy, and different focuses. The experimental results show that the delay time and jitter time decrease with the increasing laser energy or PSB. Compared with unfocused lasers, focused lasers have smaller trigger threshold. Switching characteristic of the LTGS is different with lenses of different focuses; the delay and jitter of the switch are smaller when it is triggered by 266 nm laser pulses. The gas switch with smaller hole for laser entering has better switch characteristics, compared with those with larger holes; the material of target electrode for the laser also affects the switching characteristics, for example, stainless electrode nerforms better than coooer one.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第1期194-200,共7页 High Voltage Engineering
基金 国家自然科学基金(11075209)~~
关键词 延时 抖动 激光触发 气体开关 电极材料 欠压比 delay time jitter time laser triggered gas switch electrode material percentage of self-breakdown voltage
  • 相关文献

参考文献9

二级参考文献235

共引文献101

同被引文献102

  • 1吴盛刚,王学军,成俊奇,杨海芳.以振荡回路为电流源的非对称开断合成试验方法研究[J].电气技术,2009,10(12):17-22. 被引量:7
  • 2秦实宏,何俊佳,程礼椿,邹积岩.合成回路试验电流引入可靠性的研究[J].湖北工业大学学报,2005,20(4):23-25. 被引量:6
  • 3裴振江,姚斯立,何俊佳,叶会生.特高压断路器几种开断试验回路比较[J].高压电器,2006,42(5):321-323. 被引量:15
  • 4Lee K C, Taira T, Mo Koo G, et al. Ignition characteristics of la-ser-ablated aluminum at shock pressures up to 2 GPa[J]. Journal of Applied Physics, 2014, 115(1): 013503.
  • 5Chen Z Y, Bogaerts A. Laser ablation of Cu and plume expansion into 1 arm ambient gas[J]. Journal of Applied Physics, 2005, 97(6): 063305.
  • 6Gragossian A, Tavassoli S H, Shokri B. Laser ablation of aluminum from normal evaporation to phase explosion[J]. Journal of Applied Physics, 2009, 105(10): 103304.
  • 7Autrique D, Clair g, L'Hermite D, et al. The role of mass removal mechanisms in the onset of ns-laser induced plasma formation[J]. Journal of Applied Physics, 2013, 114(2): 023301.
  • 8Harilal S S, Miloshevsky G V, Diwakar P K, et al. Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere[J]. Physics of Plasmas, 2012, 19(8): 083504.
  • 9Wu J, Li X W, Wei W F, et al. Understanding plume splitting of laser ablated plasma: a view from ion distribution dynamics[J]. Physics of Plasmas, 2013, 20(11): 113512.
  • 10Chen J, Lunney J G; Lippert T, et al. Langmuir probe measurements and mass spectrometry of plasma plumes generated by laser ablation of La0.4Ca0.6MnO3[J]. Journal of Applied Physics, 2014, 116(7): 073303.

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部