期刊文献+

基于PCA和禁忌搜索的网络流量特征选择算法 被引量:5

Algorithm of Network Traffic Feature Selection Based on PCA and Tabu Search
下载PDF
导出
摘要 针对网络流量特征属性选择的寻优和效率问题,提出了一种PCA结合禁忌搜索的网络流量特征选择方法。该方法通过PCA对高维特征属性空间进行特征约减,并利用禁忌搜索得到全局最优特征子集。实验证明,相比流行的遗传算法(GA)和粒子群寻优算法(PSO-SVM),PCA和禁忌搜索方法具有更好的处理效率和特征选择精度。 A network traffic feature selection method using principal component analysis and tabu search(PCA-TS) was proposed for the purpose of the efficiency and quality when using lecture selection. This approach reduces high-dimen- sional features using PCA and gets the optimal feature subset on the basis of tabu search. Experiment shows that PCA- TS method has better efficiency and selection accuracy compared with GA and PSO-SVM.
出处 《计算机科学》 CSCD 北大核心 2014年第1期187-191,共5页 Computer Science
基金 国家科技支撑计划课题(2012BAH02B01 2012BAH02B03) 国家高技术研究发展计划(863计划)课题(2011AA01A103 2011AA01A101) 国家高技术研究发展计划(863计划)基金资助项目(2011BAH19B04)资助
关键词 特征约减 特征选择 主成分分析 禁忌搜索 Feature reduction,Feature selection,Principal component analysis(PCA),Tabu search
  • 相关文献

参考文献12

  • 1Faivishevsky L,Gold berger J. Unsupervised feature selection based on non-parametric mutual information[A].IEEE,2012.1-6.
  • 2Davies S,Russl S. NP-completeness of searches for smallest possible feature sets[A].Menlo Park,1994.37-39.
  • 3Lakhina A,Crovella M,Diot C. Mining anomalies using traffic feature distributions[J].ACM SIGCOMM Computer Communication Review ACM,2005,(04):217-228.
  • 4Berge A L,Pietra S D,Pietra V D. A maximum entropy approach to natural language processing[J].Computational Linguistic,1996,(01):39-71.
  • 5Li Yong-ming,Zhang Su-juan,Zeng Xiao-ping. Research of multi-population agent genetic algorithm for feature selection[J].Expert systems with application,2009,(07):11570-11581.
  • 6Huang Cheng-long,Dun Jian-fan. A distributed PSO-SVM hybrid system with feature selection and parameter optimization[J].Applied Soft Computing Journal,2008,(04):1381-1391.
  • 7范雪莉,冯海泓,原猛.基于互信息的主成分分析特征选择算法[J].控制与决策,2013,28(6):915-919. 被引量:105
  • 8Wang Yong,Li Lin,Ni Jun. Feature selection using tabu search with long-term memories and probabilistic neural networks[J].Pattern Recognition Letters,2009,(07):661-670.
  • 9Marinake M,Marinakis Y,Doumpos M. A comparison of several nearest neighbor classifier metrics using Tabu Search algorithm for the feature sdection problem[J].Optimization Letters,2008,(03):299-308.
  • 10Tahir M A,Smith J. Improving nearest neighbor classifier using Tabu Search and ensemble distance metrics[A].Hong Kong,China:IEEE Computer Society,2006.1086-1090.

二级参考文献31

  • 1Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 2Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 3Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 4Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 5Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 6Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
  • 7Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.
  • 8Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf.
  • 9Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf.
  • 10Bernaille L, Teixeira R, Salamatian K. Early application identification. In: Proc. of the Conf. on Future Networking Technologies 2006 (CoNEXT 2006). Lisboa, 2006. http://portal.acm.org/citation.efm?id=1368445.

共引文献274

同被引文献48

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2Geem Z W, Kim J H, Loganathan G V. A new heuristic optimi- zation algorithm: harmony search [ J ]. Simulation, 2001,76 (2) :60-68.
  • 3Fesangharya M, Mahdavib M, Jolandanc M M, et al. Hybridi- zing harmony search algorithm with sequential quadratic pro- gramming for engineering optimization problems [ J ]. Computer Methods in Applied Mechanics and Engineering, 2008, 197 (33-40) :3080-3091.
  • 4Jaberipour M, Khorram E. Two improved harmony search algo- rithms for solving engineering optimization problems [ J ]. Com- munications in Nonlinear Science and Numerical Simulation, 2010,15 ( 11 ) :3316-3331.
  • 5Mahdavi M, Fesangharym D E. An improved harmony search algorithm for solving optimization problems[ J]. Applied Math- ematics and Computation,2007,188(2) :1567-1579.
  • 6Geem Z W, Lee K S, Park Y. Application of harmony search to vehicle routing [ J ]. American Journal of Applied Sciences, 2005,2(12) : 1552-1557.
  • 7Xing E P,Jordan M I,Karp R M. Feature selection for high-di- mensional genomic mieroarray data [C] // Proceedings of the 15th International Conference on Machine Learning. 2001:601-608.
  • 8Andrew Y N. On feature selection: learning with exponentially many irrelevant features as training examples[C]//Proceedings of the 15th International Conference on Machine Learning. 1998:404-412.
  • 9Bhattacharjee A, Richards W G, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling re- veals distinct adenocarcinoma subclasses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(24) : 13790-13795.
  • 10Golub T R, Slonim D K, Tamayo P, et al. Molecular classifica- tion of cancer, class discovery and class prediction by gene ex- pression monitoring[J]. Science, 1999,286 (5439) : 531-537.

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部