期刊文献+

一种基于改进粒子滤波的运动目标跟踪 被引量:6

Moving Target Tracking Based on Improved Particle Filter
下载PDF
导出
摘要 基于传统粒子滤波的运动目标跟踪方法中存在重要密度函数选择困难、缺乏通用性、重采样设计难度大、粒子退化现象难以有效解决等问题。因此提出了一种改进的粒子滤波运动目标跟踪方法,该方法采用人工鱼群算法改进重要密度函数,通过粒子间的不断交互及协调行为,使其状态接近后验分布,从而提高重要密度函数的通用性。在此基础上,结合人工免疫算法的免疫算子改进重采样,平衡粒子群的收敛性和多样性,抑制早熟现象。实验结果表明,与传统粒子滤波算法相比,该方法通过参数调节,提高了运动目标跟踪的准确性和抗干扰能力,并能有效地抑制粒子退化现象。 In the target tracking method based on traditional particle filter, the importance density function is difficult to select and lack of versatility, and the re-sampling method is difficult to design to solve the particle degradation phenome- non effectively. Therefore, a moving target tracking method based on improved particle filter, using artificial fish swarm algorithm,was proposed to improve the importance density function. Particles interact and coordinate their behavior constantly, making the state of particles close to the posterior distribution, and improve the versatility of the importance density function. On this basis, in order to improve re-sampling method and suppress premature phenomenon, the parti- cle swarm convergence and diversity are balanced by the immune operators of artificial immune algorithm. Experimental results show that compared with traditional particle filter algorithm, moving target tracking accuracy and anti-interfe- rence ability are improved and the particle degradation phenomenon is suppressed effectively by adjusting the parame- ters of the present algorithm.
作者 李志 谢强
出处 《计算机科学》 CSCD 北大核心 2014年第2期232-235,252,共5页 Computer Science
关键词 粒子滤波 重要密度函数 重采样 人工鱼群 人工免疫 运动目标跟踪 Particle filter, Importance density function, Re-sampling method, Artificial fish swarm algorithm, Artificial immune algorithm, Moving target tracking
  • 相关文献

参考文献10

  • 1Ning J,Zhang L,Zhang D. Robust mean-shift tracking with corrected background-weighted histogram[J].Computer Vision,2012,(1):62-69.
  • 2Wang Jun,Peng Jin-ye,Feng Xiao-yi. An Improved Camshift-Based Particle Filter Algorithm for Face Tracking[A].2011.278-285.
  • 3于金霞,汤永利,许景民.基于多样性向导的自适应重采样粒子滤波研究[J].计算机科学,2012,39(6):231-234. 被引量:5
  • 4Crisan D,Doucet A. A Survey of Convergence Results on Particle Filtering Methods for Practitioners[J].{H}IEEE Transactions on Signal Processing,2002,(3):736-746.
  • 5Pan P,Schonfeld D. Video Tracking Based on Sequential Particle Filtering on Graphs[J].{H}IEEE Transactions on Image Processing,2011,(6):1641-1651.
  • 6Song Lei,Zhang Rong,Liu Zheng-kai. Object Tracking Based on Parzen Particle Filter Using Multiple Cues[A].2007.206-215.
  • 7Vadakkepat P,Liu Jing. Improved Particle Filter in Sensor Fusion for Tracking Randomly Moving Object[J].{H}IEEE Transactions on Instrumentation and Measurement,2006.1823-1832.
  • 8Fernandes E M G P,Martins T F M C,Rocha A M A C. Fish swarm intelligent algorithm for bound constrained global optimization[A].2009.1-3.
  • 9Yazdani D,Toosi A N,Meybodi R M. Fuzzy Adaptive Artificial Fish Swarm Algorithm[A].2010.334-343.
  • 10Han Hua,Ding Yong-sheng,Hao Kuang-rong. A new immune particle filter algorithm for tracking a moving target[A].2010.3248-3252.

二级参考文献10

  • 1Gordon N J, Salmond D J, Smith A F M. Novel approach to non- linear/non-Gaussian Bayesian state estimation[-J-]. IEE Procee- dings on Radar and Signal Processing, 1993,140(2) 107-113.
  • 2Doucet A, Godsill S J, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[-J. Statistics and Com- puting, 2000,10(3) 197-208.
  • 3Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-GaussianBayesian trae- king[-J. IEEE Transactions on Signal Processing, 2002,50(20) : 174-188.
  • 4Liu J S. Metropolized independent sampling with comparisons to rejection sampling and importance sampling[-J. Statistics and Computing, 1996,6 (1) : 113-119.
  • 5Douc R, Capppe O, Moulines E. Comparison of resampling sch- emes for particle filteringEC]ffProceedings of Image and Signal Processing and Analysis. Zagreb: IEEE Press, 2005 : 64-69.
  • 6Bolic M, Djuric P, Hong Sang-jin. New resampling algorithms for particle filters [-C3 // Proceedings of the 2003 International Conference on Acoustics, Speech, and Signal Processing. HongKong: IEEE Press, 2003 : 589-592.
  • 7Yu Jin-xia, Tang Yongli, Liu Wen-jing. Research on diversity measure in particle filter[C']//Proceedings of the International Conference on Intelligence Computation Technology and Auto- mation. Changsha: IEEE Press, 2010:1146-1149.
  • 8于金霞,蔡自兴,段琢华.基于粒子滤波的移动机器人定位关键技术研究综述[J].计算机应用研究,2007,24(11):9-14. 被引量:13
  • 9谌剑,严平,张静远.权值优化组合粒子滤波算法研究[J].计算机工程与应用,2009,45(24):33-35. 被引量:13
  • 10杨振强,王常虹,庄显义.自适应复制、交叉和突变的遗传算法[J].电子科学学刊,2000,22(1):112-117. 被引量:16

共引文献4

同被引文献67

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:22
  • 2胡波,陈恳,徐建瑜,张云.基于Kalman预测和Mean-shift算法的视频目标跟踪[J].光电子.激光,2009,20(11):1517-1522. 被引量:22
  • 3宫轶松.粒子滤波算法研究及其在GPS/DR组合导航中的应用[D].解放军信息工程大学,2010.
  • 4Jiang Nan,Liu Wen-yu,Wu Ying.Learning Adaptive Metric for Robust Visual Tracking[J].IEEE Transactions on Image Processing,2011,0(8):2288-2291.
  • 5Zhou Xiao-long,Li Y F,He Bing-wei,et al.GM-PHD-BasedMulti-Target Visual Tracking Using Entropy Distribution and Game Theory[J].IEEE Transactions on Industrial Informatics,2014,10(2):1064-1076.
  • 6Zhou Xiao-long,Li Y F,He Bing-wei.Game-Theoretical Occlusion Handling for Multi-Target Visual Tracking[J].Pattern Recognition,2013,46(10):2670-2684.
  • 7Adam A,Rivlin E,Shimshoni I.Robust fragments-based track-ing using the integral histogram[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2006:798-805.
  • 8Avidan S.Support vector tracking[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2004,6(8):1064-1072.
  • 9Yu T,Wu Y.Differential tracking based on spatial-appearance model(sam) [C]∥IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2006:720-727.
  • 10Guang Lin-yuan,Xue Mo-gen.PCA-Based Adaptive Particle Filter for Tracking[C]∥International Conference on Image and Signal Processing.Los Alamitos:IEEE Computer Society,2010:363-367.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部