期刊文献+

三种图像分割算法的对比及图像分割方法的改进 被引量:23

CONTRAST OF THREE IMAGE SEGMENTATION ALGORITHMS AND IMPROVEMENT OF IMAGE SEGMENTATION METHODS
下载PDF
导出
摘要 通过研究图像分割算法的原理和实验对比,可以发现标记分水岭分割方法是以边缘特性为基础,通过设置光谱特征标记来分割图像,其分割结果边缘精度高,但是仍然存在较为严重的过分割和欠分割情况。而mean shift分割方法和eCognition分割方法是以光谱特征为分割依据的分割方法,虽然它们分割结果的过分割和欠分割情况较少,但是分割对象的边缘精度较差。分析以上存在的问题后,通过融合边缘特征和区域特征,并且依据一定的特征来选择种子点,尽量避免种子点选择在边缘区,从而实现提高图像分割的效果。通过实验取得了好的分割效果,说明改进的图像分割方法是可行的。 By analysing their principles and experiment contracts, we can find that the marker controlled watershed segmentation is an edge-based segmentation method, it segments the image by setting the spectral feature marker and has high edge precision in segmentation result, but still has a lot of over-segmentation and under-segmentation situations. As the segmentation methods based on spectral feature, the mean shift segmentation method and the eCognition segmentation method have less over-segmentation and under-segmentation situations in segmentation results, but the edge precision of segmenting objects is poorer. With the analysis on the problems above, in this paper we select the seed points according to certain features through fusing the edge featu~'es and regional features, and do best to avoid the seed points to be chosen near the edges, so as to improve the image segmentation effects. Better result is also obtained through the experiment, this proves that the improved segmentation method is feasible.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第1期194-196,200,共4页 Computer Applications and Software
基金 国家自然科学基金项目(41071274) 国家科技支撑计划课题(2012BAC16B01)
关键词 分割 分水岭分割 分型网络演化方法 Mean SHIFT 种子点 Segmentation Watershed segmentation method Fractal net evolution approach Mean shift Seed point
  • 相关文献

参考文献16

  • 1eCognition Developer. eCognition User Guide [ EB/OL ]. http ://www. ecognition, com/products/trial-software.
  • 2Blaschke T, Lang S, Geoffrey J Hay. Object-Based Image Analysis-Spa- tial Concepts for Knowledge-Driven Remote Sensing Applieatinns[ C ]. Verlag Berlin Heidelberg, German ,2008.
  • 3Ts Z,Olugbara O O,Sunday O O,et al. Image Segmentation, Available Techniques,Developments and Open Issues[ J]. Canadian Journal on Image P~veessing and Computer Vision ,2011,2 ( 3 ) :20 - 29.
  • 4吴宁,陈秋晓.面向影像分割的多尺度快速区域合并方法[J].计算机工程与应用,2012,48(6):1-4. 被引量:3
  • 5Jin Xiaoli, Lin Tusheng, Liao Hang, et al. Multi-Spectral MRI Brain Im- age Segmentation Based On Kernel Clustering Analysis [ C ]. International Conference on System Engineering and Modeling, 2012:141 - 146.
  • 6Fukanaga K, Hostefler L D. The Estimation of the Gradient of a Densi- ty Function, with Applications in Pattern Recognition [ J ]. IEEE Transactions on Information Theory, 1975, 21 (1) : 32-40.
  • 7Cheng Y. Mean Shift, Mode Seeking, and Clustering[J]. IEEE Tram on Pattern Analysis and Machine Intelligence, 1995, 17(8) :790-799.
  • 8Comaniciu D, Meer P. Mean shift:A Robust Approach toward Feature Space Analysis[ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence ,2002,24 ( 5 ) :603 - 619.
  • 9Vincent L , Soille P. Watersheds in digital spaces:an efficient algorithm based on immemion simulations[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 1991,13 (6) :583 - 598.
  • 10Soille P. Morphological image analysis applied to crop field mapping [ J ]. Image and Vision Computing,2010,18 ( 13 ) : 1025 - 1032.

二级参考文献27

共引文献31

同被引文献161

引证文献23

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部