期刊文献+

冷拉SAE1008低碳钢丝强化机制的探讨 被引量:4

Strengthening mechanism of a low carbon SAE1008 steel wire during cold drawing
原文传递
导出
摘要 利用SEM,TEM和XRD等分析手段研究SAE1008低碳钢丝冷拔形变过程中微观组织和力学性能的变化规律。结果表明,钢丝的抗拉强度随着应变增加呈线性上升,基本符合Hall-Petch关系。应变较小时,钢丝的加工硬化率基本不变;当应变增加到3.03以后,钢丝的加工硬化率显著提高。冷拔过程中,横截面上铁素体晶粒明显细化,纵截面上晶粒逐渐被拉长呈片层状。形变过程中,铁素体片层中沿着拉拔方向会形成强烈的<110>丝织构。大应变后铁素体中位错密度也急剧增加,形成了大量的位错胞。 The evolutions of microstructure and mechanical properties of a low carbon SAE1008 steel wire during cold drawing were investigated by means of SEM, TEM and XRD. The results show that the tensile strength of the wire increases linearly with the increasing of strain, which is basically followed the relationship of Hall-Petch. When the strain is small, the work hardening rate of the wire is almost unchanged, but it significantly improves with the strain increasing to 3.03. Ferrite grains in transverse section are refined and lamellar in longitudinal section of the wire deforms during cold drawing. With increasing strain the strong 〈 110 〉 fiber texture forms in ferrite along the drawing direction. The dislocation density and dislocation cells in ferrite lamellar increases significantly after large deformation.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2014年第1期115-119,共5页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(51371050) 江苏省自然科学基金(BK2011616) 江苏省产学研前瞻性研究(BY2011144) 张家港市科技攻关(ZKJ1013)
关键词 低碳钢丝 冷拔形变 强化机制 位错 织构 low carbon wire cold drawing deformation strengthening mechanism dislocation texture
  • 相关文献

参考文献19

  • 1Tagashira S,Sakai K,Furuhara T. Deformation microstructure and tensile strength of cold rolled pearlitic steel sheets[J].{H}ISIJ International,2000,(11):1149-1156.
  • 2Embury J D,Fisher R M. The structure and properties of drawn pearlite[J].Acta Metall,1966,(02):147-159.
  • 3Langford G. A study of the deformation of patented steel wire[J].{H}Metallurgical Transactions,1970,(02):465-477.
  • 4Langford G. Deformation of pearlite[J].{H}Metallurgical Transactions,1977,(06):861-875.
  • 5Zelin M. Microstructure evolution in pearlitic steels during wire drawing[J].{H}ACTA MATERIALIA,2002,(17):4431-4447.
  • 6Tarui T,Moruyama N,Takahashi J. Microstructure control and strengthening of high-carbon steel wires[J].Nippon Steel Technical Report,2005,(01):51-61.
  • 7Hono K,Ohnuma M,Murayama M. Cementite decomposition in heavily drawn pearlite steel wire[J].{H}Scripta Materialia,2001,(06):977-983.
  • 8Takahashi J,Kawakami K,Sugiyama M. Quantitative composition analysis of spherical cementite by three-dimensional atom probe[J].J Iron Steel Inst,2007,(02):145-149.
  • 9Gavriljuk V G. Decomposition of cementite in pearlitic steel due to plastic deformation[J].{H}Material Science and Engineering,2003,(1-2):81-89.
  • 10Zhang X D,Godfrey A,Huang X X. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire[J].{H}Acta Materialia,2011,(09):3422-3430.

二级参考文献33

  • 1尹钟大,李晓东,李海滨,来忠红.18Ni马氏体时效钢时效机理的研究[J].金属学报,1995,31(1). 被引量:19
  • 2van Swygenhoven H. Grain boundaries and dislocations [J]. Science, 2002,296 : 66.
  • 3Yamako V, Wolf D, Phillopt S R, et al. Dislocation processes in tile deformation of nanocrystalline materials [J]. Nature Mater, 2002,1,1.
  • 4David Stewart, Ke-Shen Cheong. Molecular dynamics simulations of dislocations and nanocrystals [J]. Current Appl Phys, 2008,8 : 494.
  • 5Gutkin M Yu, Ovid'ko I A, Skiba N V. Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials [J]. J Phys D: Appl Phys, 2005, 38:3921.
  • 6Vo N Q, Averback R S, Bellon P, et al. Quantitative description of plastic deformation in nanocrystalline Cu dislocation glide versus grain boundary sliding [J]. Phys Rev B, 2008,77 : 134108.
  • 7Swygenhoven H Van, Derlet P M, Hasnaoui A. Atomic mechanism for dislocation emission from nanosized grain boundaries [J]. Phys Rev B, 2002,66 : 024101.
  • 8Derlet P M, Hasnaoui A, Swygenhoven H Van. Atomistic simulations as guidance to experiments [J]. Scripta Mater, 2003,49 : 629.
  • 9Yamako V, Wolf D, Phillopt S E, et al. Deformation-mechanismmap for nanocrystalline metals by molecular-dynamics simulation [J]. Nature Mater, 2004,3 : 43.
  • 10Frφseth A G, Derlet P M, Swygenhoven H Van. Dislocations emitted from nanocrystalline grain boundaries: Nucleation and splitting distance[J]. Acta Mater, 2008,52 : 5863.

共引文献31

同被引文献26

  • 1石祥虎,陈豫增,张昆华,刘峰.高强度冷拔纳米珠光体钢丝的力学性能热稳定性[J].材料热处理学报,2013,34(S2):58-62. 被引量:2
  • 2WantangFU,YiXIONG,JunZHAO,YongLI,T.Furuhara,T.Maki.Microstructural Evolution of Pearlite in Eutectoid Fe-C Alloys during Severe Cold Rolling[J].Journal of Materials Science & Technology,2005,21(1):25-27. 被引量:9
  • 3S. Goto,R. Kirchheim,T . Al-Kassab,C. Borchers.Application of cold drawn lamellar microstructure for developing ultra-high strength wires[J].中国有色金属学会会刊:英文版,2007,17(6):1129-1138. 被引量:15
  • 4Ning Guo,Baifeng Luan,Qing Liu.Influence of pre-torsion deformation on microstructures and properties of cold drawing pearlitic steel wires[J]. Materials and Design . 2013
  • 5A.M. Elwazri,P. Wanjara,S. Yue.The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel[J]. Materials Science & Engineering A . 2005 (1)
  • 6Xiaohua Hu,Paul Van Houtte,Martin Liebeherr,Artur Walentek,Marc Seefeldt,Hendrik Vandekinderen.Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models[J]. Acta Materialia . 2005 (4)
  • 7Wong Jong Nam,Chul Min Bae,Sei J Oh,Soon-Ju Kwon.Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires[J]. Scripta Materialia . 2000 (5)
  • 8N. Ridley.A Review of the Data on the Interlamellar Spacing of Pearlite[J]. Metallurgical Transactions A . 1984 (6)
  • 9George Langford.Deformation of pearlite[J]. Metallurgical Transactions A . 1977 (6)
  • 10Nishida, Seiki,Yoshie, Atsuhiko,Imagumbai, Masana.Work hardening of hypereutectoid and eutectoid steels during drawing. ISIJ International . 1998

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部