期刊文献+

像斑直方图相似性测度的高分辨率遥感影像变化检测 被引量:10

Change detection based on similarity measurement of object histogram using high-resolution remote sensing imagery
原文传递
导出
摘要 基于像斑的变化向量分析法CVA(Change Vector Analysis)过分依赖像斑的灰度均值信息,而未能有效利用其灰度分布信息,这在高分辨率遥感影像变化检测中存在不足。本文提出了一种基于像斑直方图相似性测度的变化检测方法。利用G统计量构建不同时期像斑之间的相似性测度。假设所有像斑的相似性测度值符合混合高斯分布模型,通过期望最大化算法EM(Expectation Maximization)求解相关参数,最后采用基于最小错误率的贝叶斯判别规则获取最终的变化结果。实验表明,本文提出的上述方法能够有效提高变化检测的精度。 The object-oriented change vector analysis method, which is excessively dependent on the mean value of each object but failed to use gray distribution information, is deficient in change detection using high-resolution remote sensing images. A new method introducing similarity measurement of object histogram is proposed in this study. First, the similarity measurement of objects between different periods is built up by G statistic. Second, the Expectation Maximization (EM) algorithm is used to calcu- late the related parameters according to the assumption that all similarity measurement values of objects fit a Gaussian Mixture Distribution model. Finally, the Bayesian rule with minimum error rate is applied to get the change/no change results. Experimental results show that the method can get results with higher accuracy in change detection, especially for high-resolution remote sensing
出处 《遥感学报》 EI CSCD 北大核心 2014年第1期139-153,共15页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:41101412) 中央高校基本科研业务费专项基金资助(编号:3101009 20102130201000139)~~
关键词 像斑 变化向量分析 变化检测 G统计量 EM算法 object-oriented, change vector analysis, change detection, G statistic, expectation maximization
  • 相关文献

同被引文献88

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部