期刊文献+

W-30Cu纳米复合粉末液相烧结致密化与晶粒长大机制 被引量:3

Densification and Grain Growth Mechanism of Nanosized W-30Cu Powder during Liquid Phase Sintering
原文传递
导出
摘要 采用喷雾干燥-煅烧、还原工艺制备超细W-30Cu复合粉末,将粉末模压成形,在1340~1420℃液相烧结15~120min,研究其致密化行为及晶粒长大机制。结果表明:W-30Cu复合粉末在液相烧结早期发生了显著的致密化,1340℃烧结15 min致密度可达到90%以上;随烧结时间的延长致密度增加,1380℃烧结90 min相对密度达到99.1%。液相烧结过程中,W晶粒不断长大并逐渐球化,且其晶粒大小G与烧结时间t符合G3∝kt关系,服从液相烧结溶解-析出机制。烧结温度对W晶粒长大影响显著,当温度从1340℃上升到1420℃时,其晶粒长大动力学系数从1.61×10-2μm3/min增大到4.65×10-2μm3/min,液相的形成、颗粒重排、溶解-析出及W晶粒长大使细晶W-Cu获得近全致密。 W-30Cu composite powder fabricated by sol-spray drying and subsequent hydrogen reduction was pressed and directly liquid phase sintered at 1340-1420 ℃ for 15-120 min, the densification and grain growth mechanism were studied. The results show that the significant densification occurs in the early sintering stage of the liquid phase. When sintered at 1340 ℃ for 15 min, the relative density reaches above 90%. With the sintering time increases, the relative density increases. When sintered at 1380 ℃ for 90 min, the maximum relative density of 99.1% is obtained. During liquid sintering, W grains grow up as spherical shape, and the grain size G and sintering time t matches the relationship G3 kt, which means that the grain growth of W is subjected to the dissolution-precipitation mechanism. When sintered in the range of 1340-1420 ℃, the grain growth kinetic coefficients increase from 1.61× 10-2 to 4.65×10-2μm3/min. The results suggest the formation of liquid, particle rearrangement, dissolution-precipitation and grain growth cause nano-sized W-30Cu composites to reach nearly full density.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第1期125-129,共5页 Rare Metal Materials and Engineering
基金 国家杰出青年科学基金(50925416) 国家自然科学基金(50874122)
关键词 W-30Cu 液相烧结 致密化 晶粒长大 W-3OCu liquid phase sintering densification grain growth
  • 相关文献

参考文献20

二级参考文献75

共引文献46

同被引文献52

  • 1张喜庆.钨铜复合材料制备及应用进展[J].有色金属,2010,62(3):53-56. 被引量:12
  • 2马运柱,黄伯云,范景莲,熊翔,汪登龙.纳米级钨基合金复合粉末的制备[J].粉末冶金工业,2004,14(5):17-23. 被引量:7
  • 3李大成,卜春阳,赵宝华,王锦.微掺镧钼丝组织和性能[J].中国钼业,2006,30(1):39-41. 被引量:9
  • 4曹琦,张二召,吴维治.钼及钼合金热加工工艺对制品性能与能耗影响初探[J].有色金属加工,2007,36(2):40-42. 被引量:2
  • 5杨晓红,范志康,梁淑华,肖鹏.TiC对CuW触头材料组织与性能的影响[J].稀有金属材料与工程,2007,36(5):817-821. 被引量:19
  • 6稀有金属应用编写组.稀有金属应用[M].北京:冶金工业出版社,1974.
  • 7YIH W H,WANG C T.Tungsten-Sourees,Metallurgy Properties and Application[M].New Ybrk:Plenum Press.1979.
  • 8MATHAUDHU S N,DEROSSET A J,HARTWIG K T,et al.Microstructures and recrystallization behavior of severely hot-deformed tungsten[J].Materials Science and Engineering:A,2009,503(1/2):28-31.
  • 9YONG L X,LONG B,YUAN C X,et al.Investigation of the compatibility of tungsten and high temperature sodium[J].Journal of Nuclear Materials,2005,343(1/3):360-365.
  • 10HOGWOOD M C,BENTLEY A R.The development of high strength and toughness fibrous microstructures in tungsten-nickel-iron alloys for kinetic energy penetrator applications[C]//Proc.of the 1994int.conf.on tungsten and refractory metals(eds)A Bose and RJ Dowding(Princeton,NJ:Metal Powder Industries Federation)pp.1995,37-45.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部