期刊文献+

基于量子免疫克隆算法的神经网络优化方法 被引量:2

Quantum-inspired clonal algorithm based method for optimizing neural networks
下载PDF
导出
摘要 为降低神经网络的冗余连接及不必要的计算代价,将量子免疫克隆算法应用于神经网络的优化过程,通过产生具有稀疏度的权值来优化神经网络结构。算法能够有效删除神经网络中的冗余连接和隐层节点,并同时提高神经网络的学习效率、函数逼近精度和泛化能力。该算法已应用于秦始皇帝陵博物院野外文物安防系统。经实际检验,算法提高了目标分类概率,降低了误报率。 In order to reduce the redundant connections and unnecessary computing cost, quantum-inspired clonal algorithm was applied to optimize neural networks. By generating neural network weights which have certain sparse ratio, the algorithm not only effectively removed redundant neural network connections and hidden layer nodes, but also improved the learning efficiency of neural network, the approximation of function accuracy and generalization ability. This method had been applied to wild relics security system of Emperor Qinshihuang's mausoleum site museum, and the results show that the method can raise the probability of target classification and reduce the false alarm rate.
出处 《计算机应用》 CSCD 北大核心 2014年第2期496-500,共5页 journal of Computer Applications
基金 国家科技支撑计划项目(2010BAK67B09 2012BAK14B01)
关键词 神经网络 量子免疫克隆算法 目标分类 冗余连接 网络优化 neural network quantum-inspired clonal algorithm target classification redundant connection networkoptimization
  • 相关文献

参考文献17

  • 1乔辉,周雁舟,邵楠.基于学习向量量化神经网络的软件可靠性预测[J].计算机应用,2012,32(5):1436-1438. 被引量:2
  • 2潘玉民,邓永红,张全柱.小波神经网络模型的确定性预测及应用[J].计算机应用,2013,33(4):1001-1005. 被引量:22
  • 3LEUNG H F, LAM H F, LING S F, et al. Tuning of the structureand parameters of neural network using an improved genetic algo-rithm[ C]// Proceedings of the 27th Annual Conference of IEEE In-dustrial Electronics Society. Piscataway: IEEE, 2001:25 - 30.
  • 4LEUNG H F, LAM H F, LING S H, et al. Tuning of the structureand parameters of a neural network using an improved genetic algo-rithm[ J] ? IEEE Transactions on Neural Network, 2003,14( 1): 79 -88.
  • 5XIAO C,CAI Z, WANG Y, et al. Tuning of the structure and pa-rameters of a neural network using a good points set evolutionarystrategy[ C] // Proceedings of the 9 th International Conference forYoung Computer Scientists. Piscataway: IEEE, 2008:1749 - 1754.
  • 6SHU L, HO S Y, HO S J. Tuning the structure and parameters of aneural network using an orthogonal simulated annealing algorithm[G] // Proceedings of the 2009 Joint Conferences on Pervasive Com-puting. Piscataway: IEEE, 2009:789 -792.
  • 7杜文莉,周仁,赵亮,钱锋.基于量子差分进化算法的神经网络优化方法[J].清华大学学报(自然科学版),2012,52(3):331-335. 被引量:10
  • 8TSAI J, CHOU J, LIU T. Tuning the structure and parameters of aneural network by using hybrid Taguchi-genetic aJgorithm[ J]. IEEETransactions on Neural Network, 2006,17( 1): 69 -80.
  • 9LI Y, JIAO L. Quantum-inspired immune clonal algorithm and itsapplication[ C] // Proceedings of the 2007 International Symposiumon Intelligent Signal Processing and Communication Systems. Piscat-away: IEEE, 2007:670-673.
  • 10JIAO L,LI Y,GONG M,et al. Quantum-inspired immune clonalalgorithm for global optimization [ J]. IEEE Transactions on Sys-tems, Man and Cybernetics, Part B: Cybernetics, 2008, 38(5):1234-1253.

二级参考文献92

共引文献128

同被引文献24

  • 1SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms [ C ]//In the Proceed- ings of the International Conference on Genetic Algo- rithms and Their Applications, Pittsburgh. PA : [ s. n. ], 1985:93 - 100.
  • 2SRINIVAS N,DEB K. Multi-objective optimization using non-dominated in genetic algorithms [ J ]. Evolutionary Computation, 1994,2 (3) :221 - 248.
  • 3ZITZLER E,THIELE L. Multiobjective Evolutionary A1- gorithms:A Comparative Case Study and the Strength Pa- reto Approach [ J ]. IEEE Transaction on Evolutionary Computation, 1999 (3) :257 - 271.
  • 4JIAO LICHENG,LI YANGYANG. Quantum-inspired Im- mune Clonal Optimization [ C ]//Proc. of International Conference on Neural Networks and Brain. Beijing, Chi- na: Is. n. ] ,2005:461 -466.
  • 5JIAO LICHENG, LI YANGYANG, GONG MAOGUO, et al. Quantum-imspired Immune Clonal Algorithm for Glob- al Optimization [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part B : Cybernetics ,2008,38 (10) : 1234 - 1253.
  • 6ZITZLER E, DEB K,THIELE L. Comparison of Multiob- jective Evolutionary Algorithms : Empirical Results [ J ]. Evolutionary Computation,2000,8 (2) : 173 - 195.
  • 7SCHOTT J R. Fault Tolerant Design Using Single and Multieriteria Genetic Algorithm Optimization [ D ]. Cam- bridge : Massachusetts Institute of Technology, 1995.
  • 8李阳阳,焦李成.量子免疫克隆多目标优化算法[J].电子与信息学报,2008,30(6):1367-1371. 被引量:6
  • 9於时才,马宁,亢军贤.基于免疫克隆选择算法的神经网络规则抽取[J].计算机工程,2009,35(1):173-175. 被引量:4
  • 10范会联,仲元昌,胡江坤,贾年龙.带信息熵反馈机制的免疫克隆文本聚类算法[J].郑州大学学报(理学版),2011,43(1):46-49. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部