期刊文献+

组合惩罚下联合均值与方差模型的变量选择

Variable selection via combined penalization in joint mean and variance models
下载PDF
导出
摘要 在生产实践和计量经济领域中,控制产品质量的方差就能保证产品的合格品数相对稳定,所以当前学者对联合均值与方差模型的研究倍感兴趣.基于解释变量经常是具有相关关系的实际情况,提出了一种由SCAD惩罚和岭回归混合在一起的组合惩罚,该惩罚充分利用了岭回归能克服解释变量相关性过高对估计效果的影响,同时也证明了这样的惩罚具有相合性和Oracle性质.使用该组合惩罚对联合均值与方差模型进行了变量选择.最后的随机模拟结果表明该模型和方法是有效的. In the production and econometric area , controlling the variance of the quality of the product can guarantee the stable quality of products .So scholars are very interested in joint mean and variance models nowadays .In general ,it is uncommon for explanatory variables to be uncorrelated .A combined penalization ,w hich is mixed by the smoothly clipped absolute deviation (SCAD ) penalty and ridge ,is proposed .It can outperform the SCAD penalty technique w hen the correlation among predictors is high . At the same time , the consistency and the Oracle properties of the combined penalization are proved .Then ,the combined penalization is used to select variables in joint mean and variance models .The results of stochastic simulation show that this model and method are effective .
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第1期147-151,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(61175041 11371077) 国家自然科学基金青年基金资助项目(11101062) 中央高校基本科研业务费专项资金资助项目(DUT12LK29) 大连民族学院自主科研基金资助项目(DC120101115)
关键词 组合惩罚 联合均值与方差模型 变量选择 惩罚极大似然估计 combined penalization joint mean and Variance model variable selection penalizedmaximum likelihood
  • 相关文献

参考文献3

二级参考文献27

  • 1Miller, A., Subset Selection in Regression (2nd ed.), Chapman & Hall, London, 2002.
  • 2Akaike, H., Information theory and an extension of the maximum likelihood principle, 2nd International Symposium on Information Theory, Eds B.N. Petrov and F.Csaki, Budapest, 1973, 267-281.
  • 3Fahrmeir, L. and Kaufmann, H., Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist., 13(1) (1985), 342-368.
  • 4McCullagh, P. and Nelder, J.A., Generalized Linear Models (2nd ed.), Chapman & Hall, London, 1989.
  • 5Nelder, J.A. and Wedderburn, R.W.M., Generalized linear models, J. Roy. Statist. Soc. Ser. A, 135(3)(1972), 370-384.
  • 6Pregibon, D., Data analytic methods for generalized linear models, Ph.D thesis, University of Toronto, 1979.
  • 7Hosmer, D.W., Jovanovic, B. and Lemeshow, S., Best subsets logistic regression, Biometrics, 45(4) (1989), 1265-1270.
  • 8Efron, B., How biased is the apparent error rate of a prediction rule? Journal of The American Statistical Association, 81(394)(1986), 461-470.
  • 9Jin M., Fang Y.-X. and Zhao L.-C., Variable selection in generalized linear models with canonical link functions, Statistics and Probability Letters, 71 (4) (2005), 371-382.
  • 10Hurvich, C.M. and Tsai, C.L., Model selection for extended quasi-likelihood models in small samples, Biometrics, 51(3)(1995), 1077-1084.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部