期刊文献+

一种新的基于SVM参数优化的算法 被引量:4

A New Algorithm Based on SVM Parameter Optimization
原文传递
导出
摘要 针对单纯使用遗传算法处理大规模数据需要时间长和对计算机的内存等硬件要求较高的问题,将神经网络嵌入到遗传算法中构造出混合智能遗传算法用于SVM核函数的参数优化,数值试验结果表明该算法对SVM核参数优化是可行的、有效的,并能得到较好的SVM核参数组合和具有较高的分类准确率及较好的泛化能力. For using classic genetic algorithm requires long hours and a higher demand for computer hardware, a new algorithm is applied to the parameter optimization of the SVM kernel function and combines the nonlinear fitting capabilities of the neural network with the global optimization capability of the genetic algorithm. The numerical test results show that the algorithm is feasible and effective for the SVM kernel parameter optimization, which can get better SVM kernel parameter combinations and has high classification accuracy and better generalization ability.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第1期200-204,共5页 Mathematics in Practice and Theory
关键词 支持向量机 遗传算法 参数优化 神经网络 support vector machine genetic algorithm parameter optimization neuralnetwork
  • 相关文献

参考文献9

  • 1Vapnik V. The Nature of Statistical Learning Theory[M].New York:Wiley,1998.
  • 2汪廷华,陈峻婷.核函数的选择研究综述[J].计算机工程与设计,2012,33(3):1181-1186. 被引量:53
  • 3张瑞,高红,张立伟.一类新的支持向量机核函数——埃尔米特核函数[J].山西大学学报(自然科学版),2012,35(1):38-42. 被引量:8
  • 4王奇,吕震宙,崔利杰.核函数的性质及其在灵敏度分析上的应用[J].西北工业大学学报,2010,28(5):797-802. 被引量:5
  • 5Imbault F,Lebart K. A stochastic optimization approach for parameter tuning of Support Vector Machines[A].Cam bridge,United Kingdom:[s.n.],2004.981-984.
  • 6邓乃扬;田英杰.数据挖掘中的新方法:支持向量机[M]北京:科学出版社,2004.
  • 7雷英杰.MATLAB遗传算法工具箱及应用[M]西安:西安电子科技大学出版社,2005.
  • 8郭嗣琮;陈刚.信息科学中的软计算方法[M]沈阳:东北大学出版社,2001.
  • 9高玮;尹志喜.现代智能仿生算法及其应用[M]北京:科技出版社,2011.

二级参考文献58

  • 1常群,王晓龙,林沂蒙,王熙照,Daniel S.Yeung.支持向量分类和多宽度高斯核[J].电子学报,2007,35(3):484-487. 被引量:10
  • 2尹传环,田盛丰,牟少敏.一种面向间隙核函数的快速算法[J].电子学报,2007,35(5):875-881. 被引量:1
  • 3Kreiner J H, Puteha C S. Safety Analysis of Tension Elements Using Various Reliability Methods. Proceedings of ISUMA- NAFIPS, 1995.
  • 4Rosenblueth E. Point Estimation for Probability Moments. Proceedings of the National Academy of Science, 1975, 72 (10) : 3812 - 3814.
  • 5Zhao Y G, Ono T. New Point Estimates for Probability Moments. Journal of Engineering Mechanics, 2000, 126 (4) : 433 - 436.
  • 6Rosenblueth E. Two-Point Estimates in Probability. Applied Mathematical Modeling, 1981,5 (5) : 329 - 335.
  • 7Zhao Y G, Ono T. Moment Method for Structural Reliability. Structural Safety, 2001, 23:47 - 75.
  • 8Millwatcr H. Universal Properties of Kernel Functions for Probabilistic Sensitivity Analysis. Probabilistic Engineering Mechanics, 2009, 24 : 89 - 99.
  • 9Faravelli L. Response-Surface Approach for Reliability Analysis. Journal of Engineering Mechanics, ASCE, 1989, 115 : 2736 -2781.
  • 10Baram Y.Learning by kernel polarization[J].Neural Com-putation,2005,17(6):1264-1275.

共引文献61

同被引文献59

  • 1刘倩,崔晨,周杭霞.改进型SVM多类分类算法在无线传感器网络中的应用[J].中国计量学院学报,2013,24(3):298-303. 被引量:8
  • 2刘华富.支持向量机Mercer核的若干性质[J].北京联合大学学报,2005,19(1):45-46. 被引量:6
  • 3平源.基于支持向量机的聚类及文本分类研究[D].北京:北京邮电大学,2012.
  • 4BURGES J.G.Geometry and Invariance in Kernel based methods.Advances in Kernel Methods-Support Vector Learning[M]. Cambridge. MIT Press, 1999.89-116.
  • 5S.Amari,S.WU.Improving support vector machine classifiers by modifying kernel function[J].Neural Networks, 1999, (12): 783 -789.
  • 6SMITS G F, JORDAN E M.Improved SVM Regression using Mixtures of Kemel[A].Proceedings of the 2002 International Joint Conference on Neural Net works[C]. Hawaii: IEEE, 2002: 2785-2790.
  • 7PERRONNIN F,RODRIGUEZ-SERRANO J A. Fisher kernels for handwritten word-spotting[C].The 10th International Conference on Document Analysis and Recognition. Beijing: IEEE, 2009:106-110.
  • 8TRAVIESO C M,BRICENO J C,FERRER M A,et al.Using Fisher kernel on 2D-shape identification[C].Computer Aided Systems Theory-EUROCAST 2007, LNCS 4739. Berlin: Springer, 2007: 740-746.
  • 9WON K-J,SAUNDERS C,PR GEL-BENNETT A.Evolving fisher kernels for biological sequence classification[R].Evolutionary computation,2011:211-214.
  • 10RYO I,SADAAKI M.Nonparametric fisher kernel using fuzzy clustering[C].Knowledge- Based Intelligent Information and Engineering Sys terns, LN CS4252, BeNin: Springer-Verlag, 2006: 78-85.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部